AD-A259 548 @

Report DAADO7-89-C00212-FTR \m\\mwmwm\mﬂm
REAL-TIME SIGHAL PROCESSING SYSTEM ‘ | DT[C

4% ELECTE

S DEC1419924 &
Dr. Michasl Andrews v .'
Space Tech Corporatien

125 Crestridge Drive c
Fort Collins, CO 80525-3900

29 October 1992

Final Technical Report
Contract No. DAAD07-89-C-0212

5 October 1989 - 29 October 1992

The views, opinions, and/or findings contained in this report are those of the
authors and should not be constrused as official Departmant of the Army

position, policy, or decision, unless so designated by other official
documsntation.

] S A
| e CAUETNT K
Approve S -
{ PD ”\- STOPUSLC reiecae
—. BTmIvter Unsmited

:::p:::of?ndo Missile Range 9 -31318

VR, W 88002-5201 \ullllllll }"\U\\\ |

92 12 11 044

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
COLOR PAGES WHICH DO NOT
REPRODUCE LEGIBLY ON BLACK
AND WHITE MICROFICHE.

|
SECURITY CLASSIFICATION OF TH1S PAGE
Form Approved
‘ REPORT DOCUMENTATION PAGE OMB8 No. 0704-0188
1a. REPORT secum'rv CLASSIFICATION 1b. RESTRICTIVE MARKINGS
Za. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
TRV T Approved for Public Release:
‘ ON/DOWNGRADING SCHEDU Distribution is Unlimited.
3. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

DAADQ7-89-C-00212-FTR
5a. NAME OF PERFOAMING ORGANIZATION 60. QFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION

(if applicable)
U.S. Armmy White Sands Missile Range

Space Tech Corporation

6c ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and <IP Cocej
125 Crestridge Drive Commander, U.S. Army White Sands Missile
Fort Collins, QO 80525-3900 Range, ATIN: STEWS-ID-TZ, WMR, NM
88002-5144
33. NAME OF *UNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT (DENTIFICATION NUMBER
ORGANIZATION (If applicable)
DAADQO7-89-C-0212
3c. ADDRESS (City, State, snd ZIP Code) i0. SOURIL OF FUNDING NUMBERS
PRIGRAN: PROJECT TASK WORK UNIT
SLIMENT 4O, | NO. NO. ACCESSION NO.

665502 1P65502M40

1 11. TITLE (Incluge Securrty Classification)

Real-Time Signal Processing Systems
2. PERSONAL AUTHOR(S)
Michael Andrews

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) |15. PAGE COUNT

Final Technical FrRomM _B801001 v0_92825 92 Oct 29 372

|‘6 SUPPLEMENTARY NOTATION The views, opinions and/or findings contained in this report are those

' of the author (s) and should not be construed as an off1c1a1 Department of the Army position,
policv, or i unl g

: 17 COSATI COOES 18. SUBJECT TERMS (Costinue on reverse if necessary and identfy by biock number)

] FIELD GROUP SUB-GROUP Real-Time Processors, Microprogrammable Processors, Crossbar

‘ Switch Chips, Linear Systems, Given Rotations, Gram-Schmidt

| Decamposition, Matrix Inversion.

[19, ABSTRACT (Continue on reverse :f necessary and identity by block number)

Develop Expandable Victor Accelerator (EVA) and its hardware and software capable of pro-
cessing range and range rate data, digital focus, real-time Kalman filtering, real-time
target motion resolution (IMR), and processing image/pattern information for real-time
optical trackers of multi-munitions scenes.

EVA consists of two major but tightly coupled components, a Vector Processing Hardware (VPH)
and a Cascadable Processing Hardware (CPH).

VPH is a speed optimized architecture capable of processing vectors of camwplex data. The
architecture is based upon the utilization of multiple Zoran VSP-325 chips. CPH is also a
speed optimized. However, the architecture is configured for those applications where the
concern for high precision and wide dynamic range is at a premium. CPH hardware utilizes
multiple Bipolar Integrated B2110/B2120 and multiple 12x14 CrossBar custam chips.

{continued on yeversel 3
0. OISTRIBUTION / AVAILABILITY OF ABSTRACT 27. ABSTRACT SECURITY CLASSIFICATION
LR uncLassirieomunumited 3 SAME as RPT. [J omic users | UNCLASSIFIED
J2a. NAME OF RESPONSIBLE INDIVIDUAL 22D. TELEPHONE (inciuoe Area Cooe)) 22¢. OFFICE SYMBOL
FOO W. LAM (505) 678~3010 STEVIS-1D~-

D Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION QF THiS PAGE

19. ABSTRACT (Continued)

VPH was fabricated, campleted and demonstrated successfully as proposed. However, CPH
is incamplete with only 70% of the design accamplished. The Cross Bar custam chips were
fabricated and campleted.

Sp W B aw —

PAGE
1.0 Introduction 9
1.1 Developmental History of EVA (Extendable Vector Architecture) 10
1.1.1 Phase I Research Effort 10
1.1.2 Phase 1I Developmental Effort 14
1.1.2.1 Significant EVA Component Considerations 16
1.1.2.2 Development of I1/0 Configuration 18
1.1.2.3 Development of EVA Control Store 21
1.1.2.4 Development of PC Interface Board 25
1.1.2.5 Study of PCB Manufacture Techniques 27
1.2 Results of the EVA Phase 1II Project 27
2.0 Brief Description of VPH and CPH Architectures 33
2.1 CPH Interface Architecture 36
2.1.1 CPH/PC Interface 36
2.1.2 DT Connect Interface 38
2.1.3 VPH/CPH Interface 40
2.2 VPH Architecture 41
2.2.1 1ISA Interface 43
2.2.2 VME Interface to VPH 44
2.3 Summary of Interfaces 45
3.0 Theory of Operation 47
3.1 VPH 47
3.1.1 VPH Internal Control 53
3.1.2 VPH Control Signals 56
3.1.3 VPH Configuration Procedures 58
3.1.3.1 System Controller Selection 58
3.1.3.2 020 EPROM Size Selection 58
3.1.3.3 GCSR Base Address Selection 59
3.1.3.4 VME Slave Address Modifier Code Selection 60
3.1.3.5 Initialization Considerations 63
3.1.4 VPH Installation and Setup Procedures 65
3.1.5 Typical VPH Operation 65
3.1.5.1 System Bootup 69
3.1.5.2 1Initialization 69
3.1.5.3 Transfer Programs to Zoran Program RAM (PRAM) 69
3.1.5.4 Data Transfer to/from Four Port Memory 71
3.1.5.5 Setting the Zoran Registers 71
3.1.5.6 Accessing the Status Latch 72
3.1.6 VPH Scripts 73
3.2 CPH Functional Units 73
3.2.1 Processor 75
3.2.2 Cache Memory 77
3.2.3 Address Generator (AG) 84
3.2.3.1 CPH Address Generator Board Download 87
3.2.4 1/0 Processor Purpose and Features 87
3.2.4.1 IOP Control Signale 87
3.2.4,2 1IOP Theory of Operation 92
3.2.4.3 10P Microsequencer 93
3.2.4.4 Processor-to-1/0 Prccessor Communication Protocol 96
3.2.5 VPH/CPH VME Buffer 96
3.2.5.1 Purpose 97
3.2.5.2 VME Buffer Board Bus Limitations 97

3

.3 Control Registers of the VME Buffer Board
.4 Address Select on the VME Buffer Board
.5 VME Buffer Board Interrupts
PC Interface Board
.1 VPH-End PC Interface
.2 10 Command Processor
HSIO Configuration
Crossbar
.1 Testing the Crossbars
CPH Microsequencer
0 Backplane
Microprogramming the CPH
Theory of Operation
Sequence of Steps
An Example
The LDF files
Default Bits
Immediate Data
CPH ROM Format
gorithms
Algorithms for Solving Linear Systems
LU Factorization
Gaussian Elimination
Gram-Schmidt Decomposition
Inversion of a Hermitian Matrix
Scaled Givens Rotations
Comparison of Algorithms
VPH FFTs
VPH Software Conventions
MicroAsm
Overview

. e s o @
= WOVRW~NOARAOWN WL

s & 8 & o o o

¢ o o
WN~N -

B

.
VoSNNS WD -

MicroASM Definition Language
GENASM Case Sensitivity
Comments
Numerical Values
Definition of Global Parameters
Logical Field Definition
Direct Field Definition
Mnemonic Definitions
Defining Fields to Accept Address Labels

Assigning Logical Fields to Physical Fields

e e = DO NN WN -~

0

1

2

3 Field Specifications
4

MI

CROASM Program
1 References to Immediate Data Values
2 Labels
3 Absolute and Relative Addressing
4 Expressions
MicroASM

nmuouurmuuuomuuuuuuuouuuLuuLLuLLUVNLLLONIELSED®DDDDDRDDDE2DDEPER2IPLLLLLLLLWLVLWL

GENASM Program - Definition of Microword Fields and Mnemonics

Complete Field and Mnemonic Definition Example
Specification of Logical Field to Physical Field Mapping

Absolute Phase Specifiers (not implemented yet)

Assigning Logical Fields to Physical Fields Example

99
101
102
103
110
112
119
123
140
144
151
157
157
157
157
158
158
158
159
159
165
165
165
166
166
166
166
170
171
177
179
179
179
179
179
180
180
180
181
182
182
182
184
184
184
185
185
186
186
187
187
188
188
188

5.5.2 Constants and Macros 188
5.5.3 Undefining Macros or Constants 189
5.5.4 1Include Files 189
5.5.5 Conditional Assembly 190
5.5.6 Local Assembler Directives 192
6.0 Conclusions 193
6.1 VPH Performance and Demonstration 193
6.2 CPH Conclusions 200
7.0 Suggestions for Phase III 202
7.1 Backplane Design ‘ 202
7.2 Integration of the EVA Computer 202
7.3 Crossbar Applications 202
7.4 Cascadability 203
7.5 EVA Extensions 203
7.6 1I0P Completion 203
7.7 Wave Processing 204
7.8 VPH Augmented Bus 204
7.9 Phase III Opportunities 204
Appendix A CPH Programs A-1
Appendix B VPH Program B-1

Appendix C PC Interface Programs c
Appendix D Microinstruction Format D
Appendix E CPH Definition File E
Appendix F IOP Definition File F-
Appendix G VME Address Control e
Appendix H IOP Programs H

Acosﬁsiiu ?of 6//
CNTTL O gRiel e

' PN . -

R A4 TR ¢ T O

Pl 2 end o .

ERVINEES G Y " -

Foom e e e

E B e

b LY Y '
cT - - . -

3y ! - L} l,;'.. . DU § ‘n

- ———d

LA a/ar
)
Dist Spevial

— eam ms SR @R

—— e e S s e eSS ARG SR RS

1.
2.
3.
4.
5.
6.
7.
8.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
2].
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.

LIST OF FIGURES

32-Bit EVA Architecture

Vector Processing Hardware
ZR34325

Phase 11 Proposal CPH

4-Port Local Memory Architectures
12x12 Crossbar with Register File
Typical Control Store Organization
XLINC CLB

Basic 2020 FPGA Device

Phase II CPH Architecture

ALU to GPR Datapaths

PC Interface Board Block Diagram
VPH Block Diagram

VPH Programmer’s Model
Synchronization

Parameter Passage to Routines VIA Stacks
Typical VPH Activity Flow Chart
CPH Programmer’s Model

Dynamic ALU Configurability

CPH Physical Layout

Cache Memory Module SIMMs

3-Port Cells

Cache Memory Bus Timing

Cache Memory - Ram Timing

2-D Counters

AG Block Diagram

I0P Microsequencer

VME Buffer Board Floorplan

PC Interface Board Layout

VPE-PC INT Layout

CPH Status Word

GPR Shift Sequence Mode 1

GPR Shift Sequence Mode 2

GPR Shift Sequence Mode 3

XBAR to GPR Path

Control Signals

Register File and Port Control
Timing Charts

Timing Charts

Timing Charts

Timing Charts

Timing Charts

Timing Charts

Engineer's Notebook Sheet

MUPAC Test Board

Crossbar Pinout

Backplane

Processor Connector List
Cache/Address Generator Connector Lists
CPH ROM Format

PAGE

13
15
17
18
19
23
24
26
28
29
37
42
50
67
68
70
74
76
78
79
80
81
82
85
86
94
98
104
113
120
125
126
127
128
131
132
133
134
135
136
137
138
140
141
142
151
152
154
160

51.
52.
53.
54,
55.
56.
57.
58.
59.

Decentralized SRIF Architecture
Distributed/Parallel Architecture
Adaptive Algorithms

MicroMemory Module

Serial I/0 Board

Crossbar Device

EVA Chassis

VPH Board

WSMR Demo Setup

161
162
164
194
195
196
197
198
200

1.0 Introduction

A Phase II SBIR contract was awarded to Space Tech Corporation to
develop a new computer architecture for WSMR STEWS-ID-TA. Foo Lam was
technical monitor and was assisted by John Williams. Michael Andrews was the
principal investigator at Space Tech. Several Space Tech employees were
involved with this effort. Steve Hall was responsible for the early design
concepts of the CPH. Larry Hall was responsible for the VPH design effort.
Jeff Weideman worked on the cache, address generator, I0P, and VME buffer
boards. James Ott worked on the cache board. Phil White tested the crossbars
and finalized the backplane design. John Stevens generated the I0 drivers and
Steve Sharp contributed to the VPH coding.

Major DOD agencies found that to upgrade their hardware development
systems to keep up with advancing technology remains a large effort. Yet, a
major hidden cost is more than a simple acquisition of equipment. Engineer
retraining and software redevelopment easily magnify the total system costs.
In early 1980, Foo Lam at the Instrumentation Directorate at White Sands
Missile Range discovered a uniquely innovative solution: build a hardware
emulator that can be universally applied across several life times of
architectural technologies and modify only the microcode. Hence, a fixed and
constant cost will remain in contrast to an escalating level of effort each
time the next hottest microprocessor comes out.

White Sands Missile Range like most other test ranges must constantly
upgrade computing facilities to take advantage of cost effective solutions. A
proliferation of different microprocessors and development systems spread
among the several laboratories reduces the commonality of effort. Code
written in one application is likely to be unsuitable to another. Testing
such code is also challenging when dissimilar hardware is encountered. A type
of universal or meta-machine would help minimize portability constraints.

In response to this need, Lam’s meta-architecture was discovered that
could emulate many diverse types of microprocessors from RISC to CISC. Aptly
called the Cascadable Processor Hardware, the CPH machine can be easily
microcoded. More importantly, the architecture can be made to emulate any
wordlength from 8- to 128-bits. Fixed-point and floating-point arithmetic for
IEEE and DEC formats are executed. Special fast DSP routines are microcoded
so that mere calling routines need be executed. And because of the microcode
capability, a user can program in the language of his desired microprocessor.
Two significant cost savings accrue. First, the ARMY proponent need no longer
purchase costly development systems each time another micro wants to be
incorporated. Seccad, he need not have to sacrifice real-time emulation
because the CPH is really a sixth gencration architecture, mostly capable of
emulating architectures int the early 2000s.

Initial architectural studies were completed by Dr. Javin Taylor at New
Mexico State Univereity. Late:, Space Tech Corporation was awarded a Phase I
and Phase II effort to respond to this requirement. As a result a novel
architecture was designed that is fast, flexible, and cascadable. The long-
term goals of Mr. Lam’s visionary architecture achieves the following
objectives. Cascadability is easily supported by merely plugging into the
backplane another processor and no new microcode is necessary.

The heart of the architecture is a fully concurrent crossbar chip. The
novel chip is a 12x1l4 port switcher which can be dynamically configured in
only one clock cycle (currently 20 nsecs). The chip is also directly
cascadable so that extensible wordlengths can be supported in hardware with no
software cycle penalties. The crossbar chip is employed in the processor
section and the address generator section thus attesting to its universality.
No doubt, the crossbar will find equal applications in modem switchers, beam
splitters, antenna beam formers, telemetry, telephony, and massively parallel
processing architectures.

During this Phase II effort, a microprogramming development tool was
designed called MICROASM. This tool development was jointly funded by support
from a Phase II SBIR contract with WSMR and SDC-Huntsville. Mr. K. Pathak
sponsored this work at SDC.

This report is organized as follows. The early sections describe the
developmental history of the Phase I and II projects. A reading is helpful to
understand the eventual device selections for the functional units. A very
brief description of the units and the overall EVA architecture can be found
in Section 2 as well. Section 3 begins the detailed explanation of the
resources including the operation of those modules that have been fabricated
such as the VPH. Section 4 introduces some of the concepts in programming
the CPH. Section 5 describes the microprogramming tool, MicroAsm, which will
be important when the CPH is to be coded. Sections 6 and 7 discuss the
results and suggestions for future work.

1.1 Developmental History of EVA (Extendabls Vector Architecturs)

EVA is an extended vector architecture computer. It consists of two
major functional subsystems, the CPH and the VPH. The CPH architecture
evolved in the course of a ten year period with the current effort of a Phase
I and Phase II SBIR. EVA is designed to support a cascadable system whereby
users can insert multiple CPH boards into the system and extend the
wordlength. The architecture has been in development over several device
technology evolutions. It has seen change from the first 8-bit slice AMD 2900
chips through the current 64-bit slice BIT 2120 multipliers. That it has
withheld change over these years attests to its conceptual strength. These
developmental efforts are described next and will be important to the reader
when the current architectural issues are discussed.

1.1.1 Phase I Ressarch Effort

Details of the Phase I effort are found in the Phase I Final Technical
Report. The technical objectives are cited next to outline the steps that
were taken during Phase I.

1. Study and organize the EVA architecture into efficiently coupled
modules for radar and signal processing. In this step, data transfer
technigques were investigated to increase 1/0 transfers at the chip and board
levels. Optimal trade-offs were determined among engineering parameters of
power, board size, and speed of operation so as to render EVA machinery fast
and efficient for laboratory and range instrumentation applications.

10

2. Determine the optimal trade-offs between fixed-point and floating-
point number systems. Also, analyze the rounding and truncation issues and/or
the overflow and underflow issues with respect to fixed-point and floating-
point operations in the EVA. The objective was to identify efficient
wordlengchs for signal processors in EVA-like architectures.

3. Study optimal ALU configurations that speed up signal processing in
EVA architectures. The objective here was to determine the ideal
configuration (16x16, 32x32, or larger multipliers) which supports the
processing bandwidths required.

4. Research the usage of fast controller circuits that may utilize
centralized or distributed PLAs. The objective of this step was to improve
arithmetic processing speeds while reducing or at least maintaining low
control wire count from the control unit to the control points in the
architecture.

S. Research microprograms for fixed-point and floating-point signal
processing algorithms executable on EVA architectures. The objective was to
developed sets of signal processing micro-routines that could be ported across
architectural changes.

The following sections describe the efforts undertaken at Space Tech
Corporation (STC) to satisfy the objectives set forth above. The basic
architecture for the EVA organization as determined from Phase I is shown in
Figure 1. The basic architecture derived for the VPH in Phase I follows in
Figure 2. During Phase II the VPH architecture was modified to include a
better VME interface controller chip, the MVME 6000, and PALs were used
instead of the Motorola BAMs for speed reasons. The remaining VPH retained
much of its Phase I characterization during Phase 1I. 1In fact, the VPH final
design exceeded its Phase I speed estimates for the 1k FFT. The 730 usec
benchmark was reduced to 604 usec in the final Phase 1I architecture.

The EVA is an architecture concept whereby high-speed yet versatile and
efficient computations are a must. 1In order to reach an acceptable compromise
between these conflicting needs, the process of selecting the building blocks
for each component of the EVA architecture considered several issues.
Minimum/maximum cascadable increments (8, 16, or 32 bits CPH only), execution
speed, versatility, availability, amount of "glue logic" needed, overall chip
count, and maximum wutilization of available resources are Jjust a
representative sample of the issues considered.

Figure 1 depicts the block diagram of the 32~bit EVA architecture
containing the Vector Processing Hardware (VPH) and the Cascadable Processing
Hardware (CPH) modules. It has been determined that all of the modules will
connect to the VMEbus. The VMEbus data transfers between modules can handle
up to 32 bits in one transfer, however the CPH allows up to 64-bit on-board
data manipulations when two C™H modules are incorporated. One CPH module will
support up to 32-bit wordlengths. This cascadability allows users to maximize
the use of available resources.

11

93}DYSPUDH

/1043u0] = TdIX ‘ 99D} 19} U]
SSalppy = ¥ Jayndwo) AHHV Jo3ndwo)
DIpg = (Q * }SOH 1SOH

sng JNA

-

1dLXjvyd

'

.Ehx?q a 141X v d ._m:xH <M

HdA

HdO

ptl—>

HdO | | 1dLX

32-Bit EVA Architecturs

'1‘“. 1.

12

2 SNE W31SAS

A

(I T ,
oow) DN GO PRl O

- WV WY

A

Wod
ovwl| | wad| [ower] | w3y | |
¥ R M) i
omwi] [oowl] [oowa] (oo ¢*asaz_m|L ol
NMHW

1 SNE WILSAS
m_ mm :
2 Joflof 1 __ | B
dSA @ IRARRRLL o € [N

13

HHgure 2. Vector Processing Hardware

JIVIIILINI LSOH 3IRA

L W—* - - v

The VPH is ideally suited for high-speed signal-processing applications
where efficient, complex-data number-crunching is of the utmost importance.
The heart of the VPH (the 2ZR34325 also referred to as the VSP-325 and shown in
Figure 3) is capable of executing high-level, vector oriented instructions
which embed the DSP algorithms directly into the device, allowing efficient
algorithm execution. Moreover, a VSP-325 based architecture facilitates
algorithm partitioning in the sense that multiple VSP-325s can be paralleled
in order to share in the data processing requirements. Hence, while the VSP-
3258 perform parallel processing with interleaved I/O on the data from one RAM
section, the host or the CPH can be up-loading or down~loading data into the
other memory bank of the VPH. Once the current activities are completed, the
roles of the VPH memory banks are reversed. This function-swapping is the
primary reaso» for the efficiency and high throughputs attainable with the
VPH.

In order to fully capitalize on the processing power of an EVA
architecture, the system bus configuration must be equally capable of
interfacing with the host, and within modules of the architecture. A study
was made to identify the most optimal bus arrangement which allows maximum
exploitation of the capabilities of the EVA architecture. The study did not
consider 16-bit bus configurations such as the STD bus, MULTIBUS I, UNIBUS,
and Qbus. The reason is that these systems do not satisfy current DSP and/or
military real-time demands, nor are they capable of supporting the dynamic
range required in such applications.

The Phase I effort concluded with an EVA architecture to support both
DSP via the VPH and cascadability via the CPH. The Phase II effort began a
year later. The gap in time offered STC and WSMR the opportunity to
incorporate new technology advances. Phase II began with a review of those
advances.

1.1.2 Phase II Developmental Effort

Through engineering analysis, STC proposed in Phase II to review,
update, and modify the preliminary EVA designs developed during Phase I of
this effort. The objective was to ensure integration of the latest technology
and design techniques in order to guarantee longevity and usability of EVA
over a wide range of applications. Of paramount importance was the
determination of the optimal number of board and interboard cabling and
control requirements for efficient operation of the cascadable architecture.

The EVA vremains an architectural concept whereby high-speed,
versatility, and efficient computation are balanced. The scope of this Phase
II project was to develop a system that incorporates cascadability and high-
speed data- and signal-processing. The building blocks, designed in Phase I,
for each component of the EVA were expanded into efficient, working modules.
A signal processing software library, containing algorithms that enhance the
usability of the EVA architecture, was studied but not fully developed.
Targeted applications for the EVA included range instrumentation, radar signal
processing, digital focusing, spectral data processing, Kalman filtering, and
real-time target motion resolution.

14

Al

*8In3003 7RIV G2£-dSA oandts

] WSMROIN LS 111
Bsw N wmaon] [@ nwouag

LY, L
NOLLVHLIY (gl UNn 3v4IM S8
... Geq ((sappy (Ga0]i o
WARAOME
puwag

15

Figure 3. ZRS4325

In order to fully capitalize on the processing power of an EVA
architecture, the system bus configuration must be equally capable of
interfacing with the host, and within modules of the architecture. Phase 1
preliminary studies and Phase II review showed that the VME system provides
the speed, versatility, and generality required in an EVA-like architecture.
STC incorporated a bus configuration within the EVA to allow maximum
exploitation of the architectural capabilities. Moreover, its asynchronous,
non-multiplexed protocol insured longevity of the system. This 1is
accomplished by providing the flexibility to incorporate faster devices into
the system design, without having to redesign or upgrade the interface block.
This allows the system performance to be upgraded as superior techmology is
developed. In addition, various processors and peripherals can operate at
various speeds without having to wait for proper timing to get on/off the bus.

Initially, the Phase II proposal identified the following cascadable
processing hardware as depicted in Figure 4. The VPH and EVA architectures
were depicted in previous figures. During the course of Phase II, the
cascadable processing hardware (CPH) underwent major changes described in
Section 1.2. Those changes came as a result of significant component
developments described next.

1.1.2.1 B8ignificant EVA Component Considerations

From extensive discussions with the WSMR-ID-TA staff, it was determined
that the BIT2110 and BIT2120 devices would serve as the main processing
engines in the CPH. Each is ideally suited as a 32- and 64-bit device. Also,
such devices provide pathways to future ALUs with minor changes to the
microcode and boards. The VPH numerical engine selected was the Zoran 325 DSP
device which became available during Phase II. The 325 chips performed as
needed. In many cases they exceeded the speeds of other choices such as the
Motorola 56000 and 96000. The AT&T DSP 32C and TI32020 devices were too slow
for the WSMR applications and were discarded early in the design selection
process of Phase II.

During Phase II GaAs technologies became mature such as the Gazelle
serial transceivers. These GaAs chips provide data transfer rates in the
gigaflop range and serve as the high speed link between the VPH and the CPH.
Thie prompted further investigations into ultra high speed buses. The high
speed 10 or HSIO bus was designed on this basis. This bus, described in a
later section under the CPH/VPH link section, was used to make 32- and 64-bit
data transfers among the modules in the CPH. Those modules include the
processor, cache memory, address generator, and IOP.

In 1991, the VPH design was impacted favorably by the introduction of
economical 4-port memories. The 4-port memory circuit shown in Figure 5 made
the VPH board requirements smaller. The device was incorporated into the
design for the program space of the VPH so that the DSPs could share the data
space with the 68020 and the ISA interface. This made a truly versatile
architecture for multiple processing tasks.

16

e ¥

w—f ey

Tvo-Board Architecture for the 32-Bit Module.

VO P1 - VO, P OO'A‘.OM mtubllﬂ YOy P - VO, M
O el—— . 9
POAY 1 FOM"s
Ag P1 ¢ A g Py et %‘ mum amammmenn PV VPR
LOC LOGIC
%V
POAT POAT
g P - A g PR - % % e L™
L) """'J WY re
Oy P - VO, PR COLUMN wtvgm VO, P3- V0, P

Figure 5. 4-Port Local Memory Architecture

Lastly, the EVA architecture became significantly fast when a custom
crossbar was designed by Steve Hall. This crossbar depicted in Figure 6 was
to make a significant impact on the large scale integration of the processor
and address generator boards. The original organization was a 12x12
configuration as shown. Later modifications required an 12x14 organization.
However, internally, the functional areas remain as in this figure.

1.1.2.2 Development of 1/0 Configuration

Before an indepth design of the CPH could have begun, the host interface
design needed to be investigated. Hence, a major design issue was to
determine how the CPH is to be viewed from the standpoint of the host or
system controller. Three basic schemes described next were investigated early
in Phase II. The CPH Bus-Based system was finally chosen.

18

OTFd 3e3e78ey YITA amqeeox) ZIXT]

*9 sanSyg

LNy Hvassodd

sessanIsITEREY

11NJ41D &vESSOND

1NOHD Yvassow

ssyzessvaledll

10 HvasSSoND

I T ET R {1133

LINJN) dvASSON

ANOMD ¥VBSSONI

|

¢ 130d L1NdNi

¢ 180d LNdNi

s 140d LNdN

¢ 1480d LNdNI

¢ L¥0d LNaNi

s 140d LNdNI

s 1¥0d 1NdN!

XNN L-01-21
XNA L—0L—C}

¢ {¥0d LNdNI

s 180d LNdNI

o L¥Od LNdNI

¢ 140d LNdNI

s 3|2 A g s 8 s 30 N

* 140d LNdNI

N4 HAUSIOIY

140d ¥N0J weRIENERL3aN]]

LINJNID 4YBSSOYd

apRzsRcec2aNg}

1100810 LvESSOND

1N0HD ¥YESSONO

LMD ¥vASSOXD

1IN0 YvasSON)

10U ¥vBSSOND

o

19

Primitive Processing Unit

This is the simplest possible view of the CPH. In this scheme, the CPH
functions as a processor with virtually no control intelligence. The host
provides the data to be processed, the microprogram code to be executed, and
explicit control instructions on where in CPH memory to place the data and
microcode and where to begin execution. Output from the CPH to the host would
be handled in a similar fashion. In this scheme, the host/CPH interface would
involve some rudimentary handshaking logic to initiate transfers, and logic to
allow the host to access CPH memory.

Intelligent IOP

This is the next more sophisticated view of the CPH. In this scheme, an
I1/0 processor would be incorporated into the CPH which would have a fair level
of control intelligence. The IOP would handle all transactions between the
host and CPH. The IOP would have access to the CPH memory space, and would
handle the task of informing the CPH where data is located, where to begin
execution, and all handshaking between host and CPH. In this scheme, the
host/CPH interface would require some processing ability of its own - probably
a microprocessor such as a 68000. Some additional logic to support the
microprocessor would be required.

CPH Bus-Based System

This is the most sophisticated view of the CPH. In this scheme, a high-
speed bus would be developed for the CPE. A bus controller would link the CPH
bus to the CPH backplane. An intelligent interface would link the CPH bus to
the host. All tramsactions between CPH and host would be handled by both the
host interface and the CPH bus controller. In this scheme, resource
requirements would far exceed those of either method previocusly outlined.

Impacts, Comparisons, and Additionsl Considerations

If the primitive approach is taken, CPH throughput will be negatively
affected, since a great deal of system overhead exists for the host to service
the CPH. The tasks of processing and 1/0 cannot occur concurrently. If the
IOP approach is taken, a marked increase in system throughput can be achieved.
This is largely due to the fact that the IOP can handle I/0O tasks while
processing of other data is being done. The increase in throughput may indeed
be significantly improved under this scheme, as it is likely that I/O time for
a given task will be equivalent to the processing time required. Throughput
may be incressed by as much as a factor of two.

Implementation of a bus-based CPH could provide a similar increase in
throughput, as well as increase overall system flexibility, since additional
special-purpose modules could be designed to hang on the CPH system bus. In
terms of impact on development costs, the IOP approach would add very little
to development coets. A few more chips would be required than if the CPH is
capable of only very rudimentary I/0, but the price of these sdditional chips
is nothing when compared to the cost of system memory. Design time would be
increased very little, as some type of I/0 circuitry must be developed. While
the implementation of an IOP is more sophisticated than the primitive
approach, the task of design may actually be somewhat simplified because of

20

- —y

[P

having & microprocessor to handle control and routing of data.

Development of a system bus for the CPH would be the most expensive in
terms of both resources required and design time required. A number of
additional considerations should be taken into account in determining which
I/0 approach to take. Among these is the idea of developing a macro or
assembly language for the CPH. The CPH is a poor architecture for
implementing looping or branching in programs. Also, processing of scalar
operations is not one of the CPH’s strong points. This means that under the
primitive approach to 1/0, separate and distinet microprograms must be written
for every task it is to accomplish. Writing microprograms is a complicated,
time-consuming task that requires an intimate knowledge of the architecture.
In addition, implementing scalar operations in microcode Tesults in
inefficient use of processor time.

Designing an IOP for the CPH would allow development of a library of
fundamental microcode routines which could be assembled into many useful, much
larger routines. These assembled routines might not make the most efficient
use of the processor, but in terms of time saved in not having to write long,
complicated microprograms, this could be a very attractive feature to
potential users. In addition, the microprocessor used in the IOP could be
used to improve processing of scalar operations - something for which the
microprocessor is more well-suited than the CPH. For the project at hand,
development of the macro language does not have to be done, but if this
capability is desired, it must be designed in now, or the system will have to
be redesigned at a later time when the feature becomes desirable. This is a
waste of both time and money.

Development of a system bus is important in a multi-CPH system, or in a
turnkey or stand-alone CPH-based system. Currently, development of an IOP for
the soystem seems a desirable and cost-effective approach to take.
Microprogram storage RAM costs about $.40 per imstruction, and data cache RAM
costs about $.08 per word. External memory for storage of IOP data and
programs would cost less than $.0025 per word. When viewed in this light, the
IOP approach may be the least expensive approach to take, since RAM space for
storing IOP programs is much less expensive than RAM space for microcode
routines to handle 1/0. The microprogram memory will not have to be as deep
if an IOP is used, and the money saved on microprogram storage space will
likely pay for the parts required to construct an IOP.

l1.1.2.3 Development of EVA Control Store

In order to effectively use EVA with as many microprograms as possible,
a writable control store organization was chosen. This organization allows
the user to load in at runtime as many microprograms as is needed for a
sequence of tasks. This type of control store then makes very efficient usage
of the costly high speed RAM by loading and subsequently unloading precious
space. Reusing the control store space requires different supporting hardware
than an EPROM or fixed microcode memory.

A typical control store circuit is shown in Figure 7. With this design,
one sees that interruption, micro-level subroutining, and context switching
are supported as is necessary in writable control stores. An adder is
included in order to compute address offsets so that relative addressing can

21

be supported at the microcode level. In writable control store architectures,
relative addressing is necessary, otherwise users could not download
microprograms without wasting writable control store epace. To avoid the
loss, every microprogram should fit in the next available location. However,
that location would not be known a priori. So some hardware must be included
in the controller to offset locations from the last microprogram loaded into
the WCS.

Stack pointers can also be supported by the stack pointer registers in
the upper left portion of Figure 7. This facility makes microprogram coding
simpler and alleviates complicated address calculations by the user in
advance. Stack pointers also facilitate subroutine calls and nesting. An
address space exceeding 64k is desired because of the several simultaneously
loaded microprograms which should be resident in the WCS. Thus, the counters
and adder should handle 20-bits instead of 16-bits (16-bits spans only 64k).

Examining off-the-shelf components for a microsequencer 20-bit adder
faster than 50 nsecs found no such devices. Even the counter must be built up
from discrete devices in order to achieve 50 nsec speeds. An estimate of the
chip count for discrete logic components for the complete sequencer indicates
that at least 50 24-pin chips may be needed. The Phase II investigation
proceeded to analyze faster and denser FPGA chips, among those included the
chips from Plus Logic. It was found possible that one FPGA will replace 50
random logic devices. The board space savings became very attractive. But in
addition, the ability to reprogram an FPGA without having to redesign the
entire PCB became more attractive.

During 1990, software was received from Plus Logic to evaluate the FPGA
devices STC anticipated for the microprogram sequencer and address generators.
That code helped STC to lay out a chip from the standard cells available from
Plus Logic. Using a FPGA is important because design changes can now be made
to the device instead of the already manufactured PCB (which may be cost
prohibitive). STC anticipated using the Plus Logic devices for a 20-bit adder
and counter. The major issue in the speed was the need for carries and
borrows across 20-bits.

Five 4-bit adders could have been used but carry lookahead circuits must
be built. Xilinx, at first, appeared to be an adequate solution but later
investigation showed that Xilinx cells were only suitable for random logic and
not adders and counters. The basic Xilinx cell called a Configurable Logic
Block (CLB) is depicted in Fig're 8. Each cell is comprised of two FFs and a
combinatorial logic section containing a program memory controlled
multiplexer. Subsequently, the FPGA design for the two dimensional counters
was completed with some custom library components provided by Plus Logic.
Every 1/0 pin and functional block of the FPGA2020 was used.

22

Y3IONIND3IS AWVHO0HdON

OIN

Figure 7. Typical Control Stors Organisation

23

=
; ax — X
__.a . | g
LOG! _-_.c'—— | coMRINATORIAL
VARIABLES — g] FUNCTION CLB OUTPUTS
— ¢ G
oy P]'l_ y
S . Qr
DN -J
G o
/—|_ Mux 0 a
1
H [-
+ NABLE CLOGK ——EK. RD
*1° (ENABLE))

o
cLock ——d q]
RESET _._ﬂ ™
— s
{GLOBAL RESET)

o e e e,

Figure 4. Each Configurable Logic Block includes a combinatorial logic section,
two fhp-fiops ana a program memory controlled multiplexer selection of function.

2 has: five logic variable inputs .a, .b, .c, .d and .e.
a direct data in di
an enabile clock .ec
a clock (invertible) .k
an asynchronous reset .rd
fwo outputs x and .y

Figure 8. XLINC CLB

24

e

A

o R —— P — —

It was desired that part of the EVA microprogram sequencer could be fit
into an FPGA. Plus Logic began working on a custom component for another
company which is an adder, mux, and incrementer all in one part. When this
component was to be completed, Space Tech would evaluate it and determine if
it could be used as part of the microprogram sequencer. It wasn't completed.

Several of the CPH’s circuits required large numbers of small and medium
scale integrated circuits. Some of these could be reduced down to a few chips
with the use of Field Programmable Gate Arrays (FPGAs) from Plus Logic. FPGAs
from other sources had been evaluated and found unsuitable for use in the CPH.
High speed adders and counters are required. Plus Logic FPGAs can be used to
implement counters of any number of bits which can be clocked at 40 MHz.
Adders have a carry propagation time of 1 nsec per bit. This was
significantly faster than any other FPGAs.

Plus Logic's FPGAs are constructed with an EPROM technology which allows
them to be easily reprogrammed. This is another advantage of using FPGAs in
the CPH. The ability to modify a section of circuitry on an FPGA as opposed
to modifying a printed circuit board is an important feature. A mistake or
modification to a printed circuit board could require a new board. This would
mean an NRE charge of several thousand dollars. With extensive use of FPGAs
and PALs it is possible to change a circuit without actually rewiring the
circuit board. The larger the FPGAs, the better the chance of being able to
make a change.

FPGAs also result in a significant parts reduction. For example, the
section of the address generator board containing four two dimensional
counters and an incrementer file would require 125 chips. With the use of
Plus Logic FPGA2040 arrays the parts count could be reduced to 16. However,
these chips are not yet available. The usc of the proposed smaller (and
available) FPGA2020 arrays would result in a part count of 36. The savings of
board manufacturing costs and engineering costs ~2lone offset the cost of the
Plus Logic development system. The basic 2020 device is depicted in Figure 9.

1.1.2.4 Development of PC Interface Board

To coordinate design, development, and testing, a special PC interface
board was designed first. An initial candidate for the PC interface board was
designed based on the following assumptions. First, WSMR will use a Zenith
286 to interface to the CPH. Second, the same board will be used to test the
CPH boards during code development at STC where a 286 PC will be used. Third,
the interface control from the perspective of both machines (the PC as well as
the CPH) is basically, "the PC (or CPH) sees a register from which to ‘write
to’ or 'read from’". However, the PC is a 16-bit bus and the CPH is a 32-bit
bus. Hence, the interface board must multiplex data accordingly depending on
the direction of the data. Fourth, the board was designed to easily interface
to typical bit-slice architectures such as the CPH. Fifth, the board shall be
capable of driving high-speed data across long distances. Here, the IEEE RS-
422 receivers are used. To invoke the simple handshake protocol earlier,
FIFOs were used on the board. FIFO signals such as almost full and almost
empty are to be monitored.

25

| W—

| oureurs | ‘-{usm L0 PINS

[
To FBs 1
FB FB FB FB
TF JF 3F 31 g
UNIVERSAL INTERCONNACT MATRIX z
N --«-n
'ro FBs
[outeurs | & FasTCLK VO PINS us'r
COMPARE

FB = FUNCTIONAL BLOCK

Figure 9. Basic 2020 FPGA Device

26

ol S W

— e aii

1.1.2.5 8tudy of PCB Manufacturs Techniques

Central to the eventual Phase II objectives was a study of PCB
techniques. A search and analysis of quality board manufacturers was done
with the indepth feedback from Unicircuit in Englewood, Colorado. The factors
with the greatest impact on cost and complexity of manufacture include the
number of layers and the use of interstitial or blind vias. (A blind via is a
hole which is buried inside the layers or only comes out one side of the
board. Using such a via makes bed-of-nails testing almost impossible because
the fixture cannot touch this via directly.) The physical dimensions of the
eventual board have some effect when the board exceeds 8" x 10". Trace widths
less than 8 mils and via sizes smaller than 15 mils would also significantly
increase cost. When the boards are to be layed out, special vias will be
reduced and replaced with another layer since this approach is less costly.
Traces and spaces of 10 mils can be used effectively. Manufacturers suggested
that this line width offers the best price per real estate.

1990 tooling charges were approximately $100 per layer. Fabrication
costs for an 8-layer board with low complexity were approximately $200 for a
board of approximately 8" x 15". Costs for creation of the bed-of-nails test
fixture for checking board integrity are about $500 on the basis of a pin
count of 3000.

Subsequently, PCB fabrication, assembly, and test were approximately
$1700 per board, assuming 10-layer boards with pin counts up to 2000 per
board. EVA architecture originally anticipated 4 boards, a CPH, an IOP, a
cache memory, and the VPH. At a minimum, $1200 was to be expected for the PCB
effort of a single board. It did not include varts or functional circuit
testing at STC. Final costs rose to $2200 per board.

1.2 Results of the EVA Phass II Project

As mentioned earlier, the Phase II development effort underwent
significant changes to the Cascadable Processor Hardware (CPH). Figure 10
depicts the current CPH. It differs from the previous architecture in that
two ALUs and two multipliers are embedded on each board instead of one each
per board. From design efforts early in Phase II, it was determined that
doubling the processing power on a CPH board could reduce the data traffic
bottlenecks for the HSIO and facilitate 64-bit processing on one board instead
of two. In order to accomplish this integration, a new chip was designed
called the Crossbar. This chip was fabricated by ILSI in Colorado Springs for
the BEVA architecture and is described in a later section. Such a chip was
necessary to reduce the several multiplexers into one single device for the
CPH. The datapath from ALUs to general purpose registers in Figure 11 was one
example of significant crossbar usage. Later, it was discovered that the same
chip could be used in the address generator board.

27

Immediate Data
(from microcode)

REGISTER 1/0 Connectors |
MULT 1 MULT 2 ALU 1 LREA(;‘IZCTEE'\S
X Y 2Z X Yy 2Z X Y Z X Y Z
'] l] | l | I l [] l J
013014 N0 010 09 19 01 02 1 03 08 i2 1011 1012
12 by 14 Crossbar With Register File
From Cache From Aux To Caoche To Address Ports
13 14 15 16 18 17 04 05 06 07

HIIRINIE

VCPH Backplane Connector

M] 1T 1117

PIPELINE REGISTER

R
<_] CPH Backplane >

Figure 10. Phase II CPH Architecture

28

L it

- g

CROSSBAR

|

|

®0 REGISTER

®0 REGISTER

®1 REGISTER

?4 REGISTER

——

2

X REGISTER

Y REGISTER

~N

ALU or
MULT

Z REGISTER

Figure 1ll. ALU to GFR Datapaths

29

The EVA organization began to solidify by the second year into several
boards. A site visit by Mr. Lam and John Williams from WSMR-ID reviewed the
new EVA architecture. Later, discussion with ID found a direct application
with another WSMR SBIR contractor, Mentor. The Mentor application included
radar tracker processing. The majority of that processing task centered
around the Kalman filter. This directed the STC design team’s attention to
fast address generation for the complex matrix operations. An address
generator was sought that would produce complex addresses in hardware at real-
time speeds so that no computational overhead would result. And a study of
matrix algorithms was initiated to ensure that EVA throughput was high. That
algorithm study is discussed in Section 4.

Each board performed a separate and distinct function so that a
cascadable design became feasible. As an introduction, those boards are
briefly discussed in Section 2.0. The boards as organized developed into a
very powerful computing engine and exceeded the performance specifications of
the Phase II proposal by two orders of magnitude in some cases. A single EVA
machine could perform over 30 operations per clock. Hence, if a 20 MHz clock
were used, EVA would be a 600 mflop machine in a single desktop machine. The
innovation became 8o attractive to Space Tech that the current EVA
architecture was proposed.

Later results during the second year proved to be demanding to the
design team at Space Tech. Advanced devices that were designed into the
architecture had to be removed because the devices did not become available,
were removed from production, or were functionally changed. The Plus Logic
FPGA 2040 which was to be an integral part of the address generator never
became available. The 2020 was substituted. The AMD 29540 FFT address
generator chip was deleted from inventory. Finally, the BIT devices that were
delivered lacked some of the vital control and status signals promised in the
advanced specifications. As these were sole source suppliers, the EVA
architecture design had to undo some of the effort and restart with less
powerful chips like the FPGA 2020.

The VPH effort proceeded more smoothly since all parts remained
available throughout the project. One major new chip discovery in December of
1989 which reduced board space needs was a four port RAM from IDT with a
7052835G part number. This single device reduced space by 20% which allowed
more functionality to be embedded on the VPH. Prior to that only the Micro
Technology MT42C8128 was available and was seriously being considered. It was
an expensive part.

During May of 1990, with considerable discussion with the technical
monitor, the value of making the architecture more general purpose became more
apparent. To that end, several changes were made to the schematic of the VPH.

The input bus to the board from the VME was originally designed to be
only a 32-bit interface. Modifications have been made which allow the
interface to be configured either as a 16- or 32-bit bus through the use of a
simple jumper acheme. Due to the type of processing the VPH is designed to
perform, namely DSP, and the computational speed it is capable of maintaining,
1/0 bandwidth becomes a serious concern. In fact, the VME bus would be sorely
strained to keep the VPH busy. Because of this fact, it was originally
proposed to make the 68020 processor bus available off the board. This was

30

ey ; gy

— k.

— .y

-

] Y Y L] kg r— P

proposed to allow for the development of external A/Ds and D/As which would
interface to the 68020. From subsequent discussions with Mr. Lam, it became
apparent that it would be beneficial if "off the shelf™ D/As and A/Ds could be
interfaced directly to the VPH. To that end and because the 68020 bus is so
similar to the VME bug, it was decided in May of 1990 to provide a rudimentary
VME bus, devoid of the layers of protocol, but able to support simple I/0
boards. The final design of 1992 provides full VME bus, however, due to the
desire to interface to single board computers (SBC) acting as masters.

The form factor of the VPH board was selected to be a VME 9U and has the
capability of holding 4k words of data RAM. Because 4k words is not enough
memory for some large data set problems, it was decided to allow for memory
expansion. Expansion is accomplished by the addition of daughter cards which
sandwich to the base board. Each daughter card contains an additional 4k
words and all of the required bus buffering and decoding. Up to three
additional boards may be added to the base board, bringing the data ram up to
16k worda. Provisions have been made to support the new 4kx8 chips when they
become available. This would double the data space.

The need for flexibility gave rise to a possible enhancement to the VPH.
Because of the similarity of the VME and the IBM~-AT and EISA bus
architectures, investigations as to the possibility of mounting the VPH in an
external box with power supply and minimal interfacing logic proceeded. This
would allow the same board with no modifications, only additions, to be
interfaced to a commonly available and inexpensive computational platform.

By June of 1990, a general VPH concurrent operating scheme for a status
latch through which the five processors may share status information was
agreed upon with WSMR. The need for such a status latch arose from the multi-
processor nature of this system. Consider, as an example, the task of
performing a two-dimensional FFT, with processing by all four Zorans. Roughly
stated, the procedure is to first perform FFTs on the rows of the matrix, then
perform FFTs on the resulting columns. The four Zorans share the work of
performing these FFTs. Because of the way the problem will be partitioned,
the Zorans will not complete the initial task of computing row FFTs at the
same instant. Some delay must then exist for some of the processors before
the column FFTs may be computed. The status latch concept will allow the
Zorans to keep track of the status of their companion processors without the
intervention of the 68020, keeping it free to perform other tasks. Later it
was agreed that assigning each processor two status bits should allow for
ample versatility.

Examination of a preliminary design for the status latch shared among
the processors revealed that the design was deficient in several respects.
The latch would allow any processor to write status bits to the latch, but in
the case of the Zorans, whenever one Zoran wrote its status the status of ita
bus companion would be lost from the latch. To prevent loss of status bits
from the latch, a duplicate image of the status bits for both Zorans on a bus
would have to be maintained in the PRAM for that bus. A Zoran expecting to
write its status would first read the status image in the PRAM, would write
back to PRAM an updated status nibble reflecting the new status, and would
finally write the updated nibble to the status latch. This sequence requires
a read and a write to PRAM and a write to the status latch. The time involved
is not a major concern, since writing out status info represents only a very

31

-

small fraction of the tasks performed. However, this sequence of operations
contains a hazard which could result in problems. Between the time a Zoran
reads and writes to the PRAM and then writes to the status latch, it is
feasible that it might lose mastership of the bus. In the event that the new
bus master is the companion Zoran updating its status, the original Zoran,
upon regaining mastership of the bus, will write a status nibble to the latch
which is erroneous. While the chances of this sequence of evunts occurring is
rather slim, such an occurrence could prove fatal to a process, since an
incorrect reflection of processor status could effectively "lock-up" a bus.
It was determined that this design for the status latch would be scrapped in
favor of a different design which will avoid the previously-discussed hazard,
require only a single write to update status, and additionally, use less-
expensive components in its implementation.

32

. ot

2.0 Brief Description of VPH and CPH Architectures

Much of the developmental history of EVA has been given in Section 1 so
that one could have an appreciation for the design approach. In this section
the reader will see the influence of the developmental history on the
interfaces among the EVA functional units and the host. As stated earlier,
EVA is composed of two main functional units, the VPH and the CPH
architectures. EVA can be organized to expand in two dimensions, one through
adding additional VPH boards and the other through adding additional CPH sub-
systems. Adding additional VPH boards is straightforward. All that is
necessary is a simple insertion in the VME backplane. However, the CPH
expansion uses different microprograms that share the common data buses. It
is even possible for the CPH to share the same cache memory. In this manner a
user saves two additional boards, a cache memory board and an address
generator board. But, the additional cost savings should be compared with the
larger and more complex microprograms needed for sharing a single cache memory
space.

The design philosophy of EVA has been to provide a user friendly system
that can be expanded easily. The advantage to this approach is obvious. The
disadvantage ie the dincreased system complexity of a very general
organization. To understand the organization further, the following sections
describe the interfaces to hosts and the internal control of the CPH. Both of
these high level views will aid the reader in comprehending the EVA computer.
The following paragraphs quickly outline the major functional capabilities on
each of the boards. Section 2.1 concentrates on the multiple CPH interfaces.
Section 2.2 focuses on the VPH interface and programming model. The VPH, as a
separate unit, is intended for operation in any computing system with a VME
backplane. Hence, it is important to grasp the VME interface capabilities of
the VPH. More specific descriptions of the CPH and VPH follow in Sectiomn 3
and are useful for the microprogrammer.

PROCESSOR BOARD DESCRIPTION

The processor contains two multipliers, two ALUs, microprogram storage
memory, & crossbar, a register file, and various I/0 ports. Many
configurations are possible by wusing different interconnections between
processeors and combinations of processors and memory banks. Descriptions of
the processor’s major components follow now.

ARITHMETIC COMPONENTS

The multipliers and ALUs support a wide range of number formats. These
include 32 and 64 bit fixed-point, single and double precision IEEE floating-
point, and DEC F and G formats. Each multiplier has a throughput of 20
wegaflops for all number formats. The ALUs each have a throughput of 40
negaflops for all number formats, however, the bandwidth of the buses may
limit double precision throughput to 20 megaflops. Total throughput of 120
megaflops could be possible with a single processor board.

33

- e g

MICROPROGRAM STORAGE RAM

The processor operates on a 50 nsec instruction cycle. Each
microinstruction is 192 bits wide by two phases long. Each phase is like &
separate instruction 25 nsec long, although they are always selected in pairs,
giving a 50 nsec instruction cycle. The memory is 16,384 deep. That’s 16,384
instructions by 2 phases by 192 bits. This memory can be written to through
the I1/0 ports, 64 bits at a time.

RECONFIGURABLE REGISTER FILE

The register file has 64 double precision registers organized as an 8 by
8 array. FPour independent ports allow high speed access to the registers.
Two ports are write only and two are read only. Each port has its own address
and a bandwidth of 40 MAz. Two reads and two writes can be done
simultanecusly. All accesses are synchronous, so a single location can be
both read from and written to in the same instruction cycle.

The register file also has four different modes of operation. One is
normal RAM access. The others link register locations into multiple
pipelines. Configurations of 8 pipelines 8 deep, 4 pipelines 16 deep, and 2
pipelines 32 deep are possible. When configured as a pipeline, writing data
to the first location of a pipe causes all data in that pipe to be shifted to
the next register locstion. Data may be read out from any stage of the pipe.

CROSSBAR NETWORK

All arithmetic components, register file ports, and I/0 ports are linked
by an extensive crossbar network. Each arithmetic component has two input
ports and one output port. These, along with external 1/0 ports and register
file ports, have a dedicated port into the crossbar. This allows for all
possible paths to occur simultaneously. All paths may be switched
simultanecusely at a rate of 40 MHz.

I/0 PORTS

The processor board has 6 dedicsted input ports, 4 dedicated output
ports, and two bidirectional ports. Each port is 32 bits wide with a
bandwidth of 40 MHz. These ports may be used to link the processor to memory
banks or link multiple processors together or both.

ADDRESS GERERATOR BOARD DESCRIPTION

The address generator is a specislized processor with an architecture
optimized to generate complex sequences of addresses for various vector and
matrix operations. This will offload the arithmetic processor and allow
higher throughputs. Microprograms for complex routines will be much shorter
and easier to write. The address generator architecture has 4 two dimensionsal
counters, 2 address look up table RAMs, microprogram storage memory, address
output ports, a register file, and a crossbar. All data paths and components
of the address generator are 16 bits wide.

34

ol

naagat —— i .)

. gl P

e S —— e -

[Xa. } o

TWO DIMENSIONAL COUNTER

Each two dimensional counter contains 2 preloadable up/down counters,
two adders, two registers, and a multiplier. This hardware is designed to do
array subscript expansion. After initializing, the counter can simultaneously
index up or down the rows and colummns of an array. This allows many complex
routines to be programmed quickly and efficiently. Each of the four counters
can be used to access a different array or vector in memory. Three of these
counters contain an FFT address sequencer. This will allow various types of
FFTs, including two dimensional FFTs, to be programmed efficiently.

ADDRESS LOOK UP TABLE RAMS

These RAMs can be used for indirect addressing or for storing sequences
of addresses too complex to calculate in real-time. Each of these RAMs are 16
bits wide by either 32k or 64k deep. They can be accessed at a rate of 20
MHZ.

MICROPROGRAM STORAGE MEMORY

The size of this memory is 16,384 instructions by 2 phases by 188 bits.
It functions the same as the processor’s memory.

MICROPROGRAM SEQUENCER

This sequencer generrtes addresses at a rate of 20 MHz to be used to
access microprogram memory «nd provide program flow control. Both relative
end direct addressing m:des are possible. A stack of 4096 words is used for
subroutine calls and a 16 bit counter is provided for loop counting.

ADDRESS OUTPUT PORTS

Three 18 bit porte are provided for outputting addresses. Each of these
ports can run at a rate of 40 MAz. A 16 bit microprogram address output port
ie also provided. This feature allows the microword of the address generator
to be combined with the processor and memory boards.

REGISTER FILE

The register file for the address generator is identical to the register
file for the processor. 1ts primary use is for address pipelining and storing
pointers.

CACHE MEMORY BOARDS

The cache memory is used to store reasonably large amounts of data for
use by the processor. The memory is organized as two banks of triple ported
static RAM, one bank for real data and the other for imaginary data. In each
instruction cycle one complex word can be written snd two complex words can be
read from cache. All writee occur in the first clock phase and all reads in
the second. This eliminates all possibility of conflict. A single location
can be read from and written to in the ssme instruction cycle.

35

The cache memory hardware consists of memory blocks. Each block has two
banks of triple ported RAM. [Each bank is 32 bits wide and the depth is
dependent upon which memory modules are used. Depths of 4k, 16k, and 64k are
currently possible. Each cache memory board has space for two memory blocks.

Memory blocks, via software control, can be linked together into banks.
Linking can be achieved both vertically, for greater depth, and horizontally,
for wider word width. Two blocks can be linked horizontally for 64 bit word
width. Any number of blocks can be linked vertically for a bank size up to
256k words. Up to 16 banks can be configured simultaneously, however, the
processor can only access one bank at any instant in time. Banks can be
toggled or paged through rapidly and any bank not being accessed by the
processor can be accessed by 1/0.

2.1 CPH Interface Architecture

The multiple interfaces among EVA are described in this section,
begipning with the CPH. This is to allow the reader a v’ew from the host
computer’s perspective and lay a foundation for the intimate hardware details
of the CPH and VPH in Section 3. EVA is primarily interfaced to a host via
the PC interface or ISA bus. Another interface was planned earlier for EVA
with a DT Connect bus but this proved to be costly to the VPH board space and
was subsequently not included in the design. However, the design effort is
documented in the next section for completeness. In 1990, this bus appeared
to become a defacto industry standard. By 1992, its popularity faded
inhibiting further versatility to other CPH applicationms.

2.1.1 m,m Interface

STC currently uses essentially the same ISA interface structure for both
the CPH and VPH. Advantages of going this route, as opposed to using very
different interface designs as was originally planned, include lower NRE for
the ISA-end cards, since only a single board design needs to be manufactured.
Also, the low-level ISA drivers are the same for the CPH and the VPH, so time
in software development has been realized. Another advantage is the ability
to interconnect the CPH and VPH through the common interface. This would
allow for some development of a CPH/VPH coprocessing system. The limited
bandwidth of this interface would obviously limit the usefulness of such an
interconnection in any real application, but it would certainly be adequate
for fundamental development.

The user view of the PC interface is depicted in Figure 12. 1In that
figure, the reader can see that the interface is comprised of a set of FIFOs
for READS and WRITES. Flags are available in a status register to monitor the
FIFO contents. Those flags include "almost full"™ and “almost empty" so that
very general device drivers can be used for the EVA computer. The interface
can also be interrupt driven as well as program driven and interrupt flags can
be found therein.

36

1¥0d
o/

SH3AIKA
ZCv—SYd

g

N39 |
ALRvdl'y

" Pa— -

o -

ey [e

" ———

37

PC Interface Board Block Diagram

Figure 12.

- — ve— L YRR [] [L]

A parity bus transceiver connects to the PC bus so that even and odd
parity can be checked. The selection is made via the status bits in the
status register and the appropriate driver code. Both the PC and EVA ends
must observe the chosen protocol. For physical distances greater than 3 feet,
the RS-422 interface was chosen. Twisted pair shielded cable then insures
noise free operation. Programming the interface board is described in Section
3.2.6. Also, to take advantage of the high nature of DSP applicatioms, the VPH
intended for DSP has a slightly different interface on its end. The
differences are discussed in Section 3.2.6.1.

2.1.2 DT Connect Interface

One of the planned interfaces for the VPH was a DT Connect interface.
Inclusion of this interface would allow systems to be implemented using Data
Translation’s data acquisition boards and possibly frame grabbers along with
the VPH as the processing engine. Such a system might be desirable in light
of the fact that Data Translations data acquisition products appear to be
competitive in terms of bandwidth, etc., but their array processors aren’t
very fast. (The DT7020 array processor appears to be their quickest
processor. This unit is rated at 8 Mflops peak, as compared to around 120
Mflops peak for the VPH.) The DT Connect interface is intended as a high-
speed data path between acquisition devices and processors which are in close
Proximity to one another.

The DT Connect interface is very loosely defined. The detinition
consists of the pinouts on the connectors, the timing for the da-a and
asynchronous handshake lines, and the electrical handshaking protocols
implemented with the handshake lines. No limits on cable length are stated,
but because the cabling is driven with conventional TTL drivers such as the
74ALS244 or 74AS244, and in light of the statement in the specification that
the data can be clocked at something over 10 MHz, it is obvious that cable
length will be limited to about 30 cm. This limitation could pose some
serious restraints on putting together a system using Data Translation
acquisition boards and a VPH.

The DT Connect interface is available only on Data Translation’s
products aimed at PC/AT-based systems. The need for a high-speed data path
between acquisition devices and processors in a PC-based system is obvious due
to the limited bandwidth of the ISA bus. Data Translation did the obvious
thing to alleviate this problem in establishing the DT Connect pathway between
their acquisition and processor boards. Because the VPH will not be on an AT
form factor card, the usefulness of a DT Connect interface for the VPH is
highly questionable.

As stated before, a practical limit on cable length is around 30 cm, and
this is about the length of cable that would be needed just to get the cable
out of the AT case. A cable long enough to exit the AT case and comnect to a
VPH placed close to the AT would be well in excess of the 30 cm limit.

A number of possible solutions or partial solutions to this obstacle
Present themselves. The simplest solution is possible due to the asynchronous
nature of the DT Connect interface. The VPH end of the interface can easily
govern the transfer rate. The transfer rate could therefore be limited to
ensure reliable data transfer to occur across the cab’e. STC estimates that

38

i R

il

——— L) ol

.

the data clocking rate could be on the order of 2 MHz for an effective data
rete of 4 MB/s. This data rate is lower than that of the ISA bus itself,
which makes the solution seem very undesirable in light of the fact that our
existing ISA interface can easily meet and probably beat the 4 MB/s rate of
exchange. The only obvious advantage to using a rate-limited DT Connect
interface is that the ISA bus would be free during transfers, which would in
turn allow the AT to be performing some other processing task concurrent to
the data transfer. If Data Translation software were being used on the AT,
the transfers across the DT Connect interface could most likely be handled as
standard DT Connect transfers by the software. On the other hand, it is
questionable whether Data Translation software could handle control of the
VPH. Depending on the ability of their software to link in user-generated
routines for non-Data Translation system components, this solution might be
totally unworkable if a user intends to use Data Translation software. If a
user is willing to write all the software for driving the VPH and any Data
Translation boards present in his system, this is a possible solution. As
stated before, the penalty in speed reduction of the interface begs the
question of the practicality of the solution, even in a situation where the
user is willing to develop necessary software.

Another solution which seems somewhat more practical would be
development of a combination ISA/DT Connect interface for the VPH. Such an
interface would have a paddle card at the AT end which would plug into the ISA
bus, would provide DT Connect ports into the interface, and provide a
connector for cabling to the VPH. A number of advantages to such a scheme
exist, including the likelihood that a design could be done which would impose
much less significant limitations on maximum data transfer rates. It is also
possible that such a scheme might allow the VPH to "look like" a Data
Translation board so that no problems would occur when using software specific
to Data Translation systems.

The disadvantages to this approach are primarily centered around the
issue of development time. An ISA interface for the VPH is already in
existence, and this design would need a good deal of modification in order to
be made compatible with both ISA and DT Connect. An additional NRE and
manufacturing charge would be incurred for production of the AT paddle card.
In addition, if the approach of making the VPH look like a Data Translation
board were taken, a great deal of research into protocols and architecture of
Data Translation'’s processors would be necessary. It might prove very hard to
get the necessary information. Also, a good deal of additional firmware
development would be necessary if the VPH were to emulate a Data Translation
processor. Considering these points, STC doesn’'t believe that this is a
viable solution.

A partial solution would involve design of a fairly generic high-speed
interface for the VPH. This interface could provide the ability to develop an
AT paddle card to provide DT Connect translation at some future date. In
terms of development costs, this seems like a much better approach. In
addition, such a generic interface could provide the ability to develop
translators for any number of other buses and/or interfaces to which we might
want to connect at some future date. STC believes that the existing VPH-end
ISA interface may be modified to provide such a generic interface.
Modifications might include increasing the width of the 1/0 data paths and
increasing the amount of control logic in order to make the adaptability of

39

the interface as robust as possible.
2.1.3 VPH/CPH Interface

A number of possible methods of implementing such an interface are
possible, and the best solution is an "augmented™ VME link between the VPH and
CPH. This "augmented" VME link utilizes the standard 32-bit data path of the
VME bus, and additionally uses 32 of the user-definable bits on the bus as
additional data bits, making the effective width of the link 64 bits. This
enables a maximum data transfer rate of 80 Mbytes/second between the VPH and
CPH. This transfer rate stretches the limits of the VPH, and requires playing
with how I/O occurs on the VPH board when VPH/CPH 64-bit transfers are
occurring. This high data transfer rate makes the added circuitry worthwhile,
since it greatly enhances the real-time capabilities of a CPH/VPH system, and
effectively cuts the required number of required bus cycles for any given
VPH/CPH transfer in half, thereby reducing loading of the host bus.

The CPH is also equipped with a VME interface through its VME buffer
board, although its VME interface is somewhat more rudimentary than that of
the VPH. This allows the VPH and CPH to be housed in a common enclosure.
This cownon enclosure actually contains two separate backplanes - a VME
backplane and a proprietary backplane for the CPH boards.

In previously proposed VPH architectures, the VPH/VME interface shared a
port of the 4 port SRAM with the ISA interface. This arrangement allowed for
VME communications to occur transparently as far as the 68020 was concerned,
which would allow the 020 to do simple system trafiic control concurrently
with VME transfers. The likely kinds of traffic control that might be
performed during VME communication would necessarily be limited to such things
as status updating or polling of status of the Zoran processes. A limitation
of this architecture is that the VME can only access the 4 port SRAM space.
Data or program code that is being transferred into other memory areas would
need to be transferred out of SRAM and into the actual destination by the 020.
This puts additional demands on the 020 and also results in real transfer
times being inflated due to the double transfers necessary.

In the current VPH architecture utilizing the MVME6000, the VME
interface has access to the entire VPH address space. This will allow the VME
interface to access data in any section of memory on the VPH board, including
the memory on the Zorans, eliminating the need for 020 transfers from 4 port
SRAM to actual destinations. The VME accesses the 4 port space through the
020’s port via the 020 bus. This imposes the limitation that while VME
transfers are occurring, the 020 is easentially locked out and can’t perform
any local processing tasks. This limitation is of only small consequence,
especially when balanced against the elimination of double transfers that
require 020 control.

Transfers between the VPH and CPH are performed by using the VME
standard 32-bit data path and using 32 of the user-configurable bits to widen
the effective data width to 64 bits. The additional 32 bits of data are
written to/read from the ISA port of the 4 port SRAM. This allows for data
transfer rates far in excess of the bandwidth of a single port into SRAM
(about 50 MB/s) and effectively doubles the stated VME bus specification of 40
MB/e maximum.

40

i EY .t il

O —— g -, g

—— s 2

Another advantage of the new VPH architecture using the MVME6000 is that
the VPH, by virtue of the capabilities of the 6000 chip, may be used as a VME
system controller. This is likely to have a large impact on marketability.
The VPH is able to be a system controller, which will allow use of standard
VME system components such as memory and data acquisition boards to function
under VPH control, without the need for an expensive VME host system or VME
controller. This could be very attractive to anyome who needs the
capabilities of a VPH but doesn’t have a VME host system. It could also be
attractive to anyone who does have a VMR host system, but would like their
vector processor to be able to master the system.

In terms of the immediate goals of this project, the new architecture
has a number of advantages. Primary among these advantages is the ability to
configure a CPH/VPH system which does not require a VME host system. With the
ISA interfaces resident on both the CPH and VPH, a very powerful processing
station way be configured with a CPH, a VPH, a good ISA machine, and the
previously described backplane and enclosure. A wide variety of off-the-shelf
data acquisition and interfacing boards are available for VME, so interfacing
such a CPH/YPH/ISA system to virtually any type of sensors or other data
sources should be relatively straightforward. Unusual or highly specialized
interfacing applications are handled by an appropriate VME-compatible
interface board (the VME buffer board in Section 3.2.5).

2.2 VPH Architecture

The Vector Processor hardware or VPH consists of 4 Zoran 325 DSP devices
and a 68020 floating-point processor configured to perform DSP operations in a
wave fashion. The 68020 can operate independently of the DSPs. The VPH is a
single board in a 9U VME quad high footprint. It can interface to a 9U or 6U
VME platform. A MVE 6000 master slave controller device on the VPH assists
data transfer across VME systems.

The VPH block diagram is shown in Figure 13. Here, one can see that the
DSPe and the 68020 talk to a 4-port SRAM from data and program storage. A PC
interface 1s also provided for code development and system monitor. The PC
interface is a fast parallel port data transfer. For 6U VME transfer an
additional VME buffer board is provided. The VPH is intended to be plug
compatible with the SUN workstations to enhance intensive numerical
computations via a set of provided math libraries.

41

HOLVHINIO

nvea

0z089

<P 4300030

s83uaav
0

= 2

FVVMIIN
sna xXnvy

HOLV

snivis

AVM3LYD

AVMILYD

Nvdd

o0 03]

NOLLYONNINOD

/11dNUY3LN

$TE-dBA

NOLWLYHLIGHY
snNe

!

926-d8A

L
O0uHd

3= ONE NVMOZ

TOHLINOD ONV| | TOMLNOD ONY

928-d8A

{1

NOLLVHLIBHY
sna

SZB-dSA

s $NA NYHOZ

4H4O0d ¥

NvHd
WYY

ooud

WVHOVYIQ X0078 HdA

NVRIELN VEI FOVIYILNI INA

Figure 13. VPH Block Diagraa

42

AN SEm Tas smm won

2.2.1 1I8A Interface

An important task of the VPH project has been the study of the host-to-
VPH interfaces. Two such interfaces are possible - the primary VME interface
and a secondary ISA interface. The ISA interface will allow the VPH to be
configured into a PC/AT system. This allows development of a variety of VPH
software without the need for access to a VME machine. The ISA/VPH
combination is not & very efficient way in which to utilize the VPH due to the
limitations of the ISA bus, but should prove convenient for development
purposes, and may even be useful for some applications. A number of
extensions to the VME standard are also in existence. These extensions are
designed to improve certain aspects of VME system performance, and to add
flexibility to the VME bus. These extensions were examined to see if any of
their features are suited to the VPH. The two extensions were examined: the
VSB bus (VME Subsystem Bus) and the VXI bus (VMEbus eXtensions for
Instrumentation).

The ISA interface is realized as a block of four 8-bit I/0O ports on the
ISA side of the interface. Two of these ports form a 16-bit data port into
the VPH, while the other two ports form a 16-bit control/status register
through which the VPH may relay status information to the ISA host. Also, the
ISA host through this same port gives control/command information to the VPH.
The basic command set includes Block Transfers to/from the VPH, Block Moves
between memory domains within the VPH, RESET of the VPH subsystem, and
commands to the 68020 to begin execution of internal code. The VPH will be
capable of interrupting the ISA host to indicate task completion. The
interrupt level used is user-selectable in order to configure the VPH into
most ISA systems without creating conflicts with other boards. The VPH also
posts task status in the status register area so that the host may poll this
register to look for task completion, rather than being interrupted. This
could be handy in some applications, but the main reason for this feature is
to prevent interrupt conflicts in ISA systems that have other resources using
all available user interrupts (This is a typical problem with ISA systems.).

The ISA host is capable of interrupting the 68020 to initiate transfers
of data and/or commands, or it may poll the status registers to see if the VPH
is in an "idle" state which will allow the host to effect various operatioms
by setting specific bits in the command register.

Transfers of data to the VPH is accomplished with the help of a 16-bit
presettable up/down counter in the interface which will allow transfer of data
to contiguous locations in the 4-port SRAM with a single address being passed
to define the starting point for the block transfer. This allows for the
maximum possible data rates between the host and VPH.

The VPH interface is mapped into the ISA I/O space rather than PC memory
space. The interface is essentially a contiguous block of four I/O locations.
These locations will be user-selectable, since add-on cards use a wide variety
of the available I/0 addresses. Because of the fact that a block of only four
locations will be required by the VPH, a user should have no problem
successfully configuring the VPH into a system. This requirement of four
contiguous locations is small when compared to most add-on cards - even
something as simple as a serial port typically requires eight contiguous 1/0
locations.

43

The I/0 mapped approach does not allow the ISA host to read or write a
specific location in a single transaction cycle since the address bus won‘t be
available to the interface. The address and data must be passed in two
separate cycles. Rates of data transfer could be seriously impacted by this
requirement. This problem is solved by giving the interface the ability to
provide incremental addresses for accessing contiguous locations in the SRAM,
eliminating the need for the host to provide an address for every word
transferred. This has virtually eliminated the potential performance penalty
of the I/0 mapped approach, since the vast majority of transfers consist of
blocks of data rather than individual words.

2,2.2 VME Interface to VPH

In VME interface design investigations, STC determined that one feature
the VPH VME interface must have is the ability to perform VME block transfers.
This will allow the highest data transfer rates possible. Designing this
ability into the interface provided some challenges.

In order to perform block transfers, the interface must include an
address counter for accessing the SRAM. This in itself is no real problem. A
state machine must be designed which clocks (increments) the counter at the
appropriate times within the block transfer. In addition, this state machine
must generate the AOl address bit to the SRAM address decoder, since this bit
is only valid on the first transfer cycle of a block transfer.

A block transfer begins with a normal byte, word, or *longword transfer.
The transfer becomes a block transfer if the DSO" and DS]* data strobes are
released and then reasserted without a negation of the AS address strobe in
between. Once a block transfer has begun as described, the address strobe
remains asserted until the block transfer is complete, with individual
tranafers being delineated by negation of both data strobes.

Once a block transfer has begun, the LWORD* and A0l and A02 - A3l bits
from the VMEbus are invalid. They are valid only for the first cycle of a
block transfer. The initial value of these bits sets up the block transfer,
and on subsequent tranafe;s the interface circuitry must supply a valid
address and hold the LWORD value which existed during the initial transfer
cycle.

The state machine to perform these functions would seem at first glance
to be relatively straightforward, but it was discovered that the machine 1is
not easy to implement in any simple way and etill be able to keep up with the
timing requirements for wmaximum throughput. STC uses a design for
implementing the state machine in & single 20RA10 PAL.

The MVME6000 is designed for interfacing 68020/30 processors to the VME
bus. An analysis of this chip’s specifications shows that the chip has a wide
range of functionality. With only a emall handful of additional logic, the
MVME6000 may be used to create a VME/680x0 interface which conforms strictly
to the VME bus specification, and which includes all VME functions except BLTs
(block transfers), including all master/slave/system controller capabilities.

44

2.3 Summary of Interfaces

The EVA computer is comprised of several functional units each of which
have multiple interfaces. Because of the versatile communication paths, the
previous sections centered on those available to a user. Two boards serve as
multiple interfaces. They are the IOP board which interfaces the CPH modules
to the host, and the VME Buffer board which interfaces to the CPH, VPH, and a
6U VME backplane so that the CPH can communicate to a VME system. They are
now listed for clarity.

Interface Board Description

PC to VPH VPH daughterboard VPH end of this Interface,
see Sections 2.2.1, 3.2.6.1

PC to CPH I0P 6U board plugs into
CPH backplane, see Sections
2.1, 2.1.1, 3.2.4, 3.2.6

PC to ISA PC-INT ISA bus board plugs into
286 and 386, see Sections
1.1.2.3 and 2.1.1

VPH to CPH VME Buffer 6U board plugs into CPH
backplane, see Sections
2.1.3 and 3.2.5

VME to VPH VPH integral part of VPH
board, see Sections 2.2.2

VME to CPH VME Buffer same board used to interface
to CPH to VPH and also called
SI0 or Serial IO board, see
Sections 3.2.5

Internal CPH BSIO high epeed IO bus that
communicates among the CPH
modules (processor, AG, 10P,
cache memory), see Section
3.2.7

45

46

L I N

3.0 Theory of Operation

With this introduction to interfaces, the theory of operation section
describes the remaining architectural details of EVA. Section 3.1 starts with
the VPH and its internal register resources. Operating the VPH will require a
thorough understanding of the VPH to VME interface. Hence, the programmer’s
model and the VPH address map are presented so that a programmer may know
which addresses on the VME bus correspond to internal VPH resources. The
address map is presented early because addresses for the 68020 are different
than those for the DSPs. (The DSPs are designed by the manufacturer to
address words. The 68020 can address bytes.) They are numerous and include
control, status registers, two program RAMs or PRAMs 1 and 2, a &4-port, and
68020 registers. Section 3.2 covers the CPH and its resources, again very
numerous including the processor, cache, address generator, IOP, and VME
Buffer. Because some boards (e.g. the VME Buffer board) serve multiple
functions, it will be necessary to return to earlier sections at times. The
versatility of EVA is evident in its many interfaces and operating modes.
Those operating modes include VPH in VME systems (such as the TSI tracker),
CPH/VPE as EVA, and CPH in VME systems. Note that the VME buffer board
allows the CPH to be hosted by a system other than a PC.

The previous sections described the general architecture and interfaces
of the CPH and VPH. With this introduction it is now possible to discuss the
operation of both in more detail. The following sections begin with a
description of the VPH resources and end with those of the CPH. In the
process, additional architectural hardware details are presented as needed.
These are accompanied by the microinstruction format and machine definition
file for the CPH found in the appendices. To understand the theory of
operation of each functional unit it will be necessary to know much about the
individual address spaces, control signals, and assembly language, and
microinstructions of the IOP, CPH, VME buffer board and PC interface board.
Such information is also presented in this Section.

3.1 vea

The VPH-20 is a multi-processor DSP board suited to FFTs, FIR and IIR
filters, spectrum analysis, Kalman (and other) adaptive filters, and numerous
other DSP tasks. The VPH-20's processing power comes from four Zoran ZR34325
Vector Processor chips (arranged two chips on each of twn buses) and one
Motorola 68020 microprocessor. The VPH-20's unique architecture allows
concentration of all processors on a single task for the highest processing
speed, or partitioning of the processing resources to handle multiple
simultanecus tasks. The VPH-20 performs a 1024-point complex FFT in as little
as 604 us at 20 MHz (483 us at 25 MHz).

The form factor of the VPH-20 is a standard 9U-4H (366.7 X 340.0 mm)
board. This ie the standard VXIbus "D"-size board. The VPH-20 requires a
single slot in the VME/VXI backplane unless the optional PC interface
daughterboard is attached, in which case two slots are required. The VPH-20
may be used in any environment where a standard VMEbus is in existence,
including VXI systems. Since none of the user-definable pins are used by the
VPH-20, it may be used in many systems which are based on a VMEbus with
extensions, such as Sun Microsystems.

47

Integral to the VPH-20 is a standard VME bus interface which allows the
VPH-20 to operate in either Master or Slave modes. The system may also be
configured as a VME System Controller board. The system architecture allows
for transactions to occur on the VME bus without interfering with signal
processing operations.

An optional high-speed PC interface allows the VPH-20 to be tied to any
standard PC/AT-compatible computer. This interface may be used in conjunction
with the VME interface, allowing a PC to be used for any number of purposes
such as process monitoring, data display, etc.

PROGRAMMER’S MODEL

A brief discussion of the system architecture including a system memory
map and the programmer’s model follows. Documents which may be of additional
help include:

32-Bit Microprocessor User'’s Manual
Motorola #MC68020UM/AD

ZR34325 32-Bit Floating-Point Vector Signal Processor
Zoran Corporation #DS34325-0989-1.5K

MVME6000 VMEbus Interface User's Manual
Motorola #MVME6000UM/D1

The VPH-20's four vector processors are arranged with one pair of
processors on each of two local buses. Each bus has 32k longwords of high-
speed static RAM (SRAM) for the use of the two vector processors the bus
serves. In addition, each VSP bus may access one port of the system’s four-
port SRAM. This four-port SRAM is a memory resource which is common to all
system resources; the use of such a memory area allows multiple rescurces to
access the same memory area simultaneously and without conflict - a single
memory location may be read from each of the four ports at the same time. The
size of the four-port SRAM is 4k longwords.

Anocther resource common to all five processors is a status latch which
provides a simple means of providing for primitive semaphore communication
between processors. Each processor may write two status bits to the status
latch; a read of the latch yields the eight status bits from the other four
processors.

The 68020 has access to all system resources, including the local
memories on each of the VSP buses and the internal registers of the four VSP
chips themselves. The VSPs have access only to their local memory, the global
status latch, and the four-port memory. All off-board communication is
handled by the 68020.

The VMEbus interface is based on the Motorola MVME6000 interface chip.
Thie versatile arrangement allows the VPH-20 to function in the Master or
Slave modes, and also allows the VPH-20 to be configured as the VME system
controller. The VPH-20 may access the entire 32-bit VME address space. The
VPH-20's location in the VME address space is user-configurable over a wide
range.

48

The optional PC interface allows the VPH-20 to communicate with any
PC/AT-compatible machine. The PC interface is designed to provide much faster
communication between the PC and the VPH-20 than could be achieved with
conventional serial or parallel communication techniques, thereby making the
PC a handy and useful addition to a system utilizing the VPH-20.

An examination of the Programmer's Model diagram in Figure 14 shows that
there remain two resources not yet discussed. The DSACK Generator handles the
task of terminating 68020 bus cycles at the appropriate time. Its operation
is normally transparent to the user, and need not be considered in most
situations. The Expansion Bus allows for the addition of any of a number of
68020-compatible subsystems, such as A/D and data acquisition, etec. Any
resource which is "tacked on" to the system expansion bus will have its bus
cycles terminated by the DSACK generator according to values loaded into the
DSACK RAM. These values define the cycle times (wait states) necessary for
addresses within the region of the 68020 address space reserved for system
expansion (the upper 2 Gbytes).

49

[wve] wovea

o086 _—11 NWVHS
snNe Tvo0T
oZ09® WO RS

sNna
NOISNYJdX3A

<MOL W
SNLVILIS

I' NVYHS
LEHOSE v

v NVHOZ | (2 wved | [e z..EON_

z eMNE MNYsEOZ

hihahdhad HEOVAESEILNI

HSo1 INA

HO W AREEAILNI
AEWITTTIIXMY

HIUNNOD

- ¥

[z nveoz]| |+ wwvtda| [+ NvuozZ |

- SMIE NWHEHOZ

VPH Programmer’s Model

Pigure 14.

50

e - e e

g

The following 68020 address map shows where the various resources reside
in the 68020 address space.

Hex Address | Resource

o - wewr | Eemow
4 0000 - 5 FFEF | 6soz0 seaM
8 0000 - 8 3FFF | Fourporc sRAM
G 0000 - C OFFF | Zoran 1 Internal Regleters
C 1000 - C IFFF | Zoran 2 Imternal Regleters

- " = > - - D D D - P T Y S e R G

1C 0000 | Global Status Latch
1C 0004 | Zoran RESET Latch
20 0002 | REQUEST (Write) or

[RELINQUISHE (Read) VMEbus
| (byte or word access)

24 0004 | PC Interface Status/Control Register
| (longword access)

24 0008 | PC Interface Interrupt Register
| (longword access)

A more detailed discussion of individual resources follows.

51

ZORAN BUS 1 & 2

Each Zoran bus (or VSP bus) serves two Zoran VSP chips and a 22K
longword area of local SRAM. 1In addition, each VSP bus has a por* iant. the
four-port memory and can access the global status latch. The following VSP
address map shows the location of resources as seen by any one of the VSP
chips.

Hex Address | Resource

0000 - 7PFF | Local SRAM
20000 - 2 O7FF | Pour-port SRAM
40000 | Global Status Latch

Note that VSP addresses 2 0000h - 2 OFFFh correspond exactly with 68020
addresses 8 0000h - 8 3FFFh for both VSP buses. In addition, VSP Bus 1
addresses 0000h - 7FFFh correspond to 68020 addresses 10 0000h - 11 FFFFh and
VSP Bus 2 addresses 0000h - 7FFFh correspond to 68020 addresses 18 0000h - 19
FFFFh. The reason for the apparent difference in address ranges between the
68020 and the VSPs is due to their respective methods of addressing. The VSPs
can only access longword memory locations, whereas the 68020 can access
individual bytes. The 6802C then has, in effect, two more least significant
address bits than the VSPs. The difference in address ranges and their
locations is very important to the programmer. The following table should be
of assistance in converting thke addresses of common resources between the
various buses; the programmer should thoroughly familiarize himself/herself
with this table.

52

BT = -v

o wena

R

- Ly ——— ey, —

JE .

To Convert | To 68020: | Use Formula:

V8P

Bus 4-port | 4-port (VSP addr. - 2 0000h)*4 + 8 0000h
Address Address

Bus 1 SRAM | Address

Address (VSP addr.)*4 + 10 0000h

Bus 2 SRAM | Address (VSP addr.)*4 + 18 0009h

Address

To Convert | To VSP: Use Formula:

680201

4-port Bus 4-port| (020 addr. - 8 0000h)/4 + 2 Q0OOh
Address Address

Bus 1 Address (020 addr. - 10 0000h)/4

Address

Bus 2 Address | (020 addr. -~ 18 0000h)/4

Address |

3.1.1 YVPH Internal Control

It is important to know how internal controls operate on the VPH since a
user will be coding directly to Zoran status latches, Zoran program memory
space (PRAMs 1 and 2), and the 4-PORT SRAM. The following information
describes address and status latch maps.

To write to DSACK SRAM:

Write to any address such that A[31..29]=[001]. This disables address
buffers and allows access to the DSACK SRAM, which is addressed with the
vector A[31,24..18].

Write to any address such that A[31..29]=[{011] to disable DSACK SRAM
load mode and re-enable address buffers.

To gain/relinquish control of the VME bus:

Write to any address such that A[31..22,20..18)=0, A[21)=[1], and
A[2,1]=[01} to request mastership (byte or word access.

Relinquish the VME bus by reading A[31..22,20..18]=0, A[21]}=[1]), and
A(2,1)={01) (byte or word access).

Status latch access:

The 68020 may access the status latch at address A[31..21)=0,
A[20..18)=(111]), A[2])=0. When reading the latch, the bit pattern is:

53

D(7] D(61 | D[5] D[4] | DI[3] D[2] | DI[1] D[o0]

Bits from | Bits from | Bits from | Bits from
Zoran #4 | Zoran #3 | Zoran #2 | Zoran #1

In addition, D[27..16) reflect PC Interface status bits STAT-[1l..0)
when the interface is on board.

When writing to the latch, the bit pattern is:

P[1) D{0] (All other bits are don’t cares.)

Bits from
68020

The 68020 may send RESET commands to any of the Zorans by writing to
A[31..21)=0, A[20..18]=({111], A[2]=1. The bit pattern is:

D[3] | D{2]) | D(l] | D[0] (All other bits
are don’t cares.)
Zoran | Zoran | Zoran | Zoran
#4 | #3] #2 | #1

A ']’ written to one of these bit positions causes the appropriate Zcran
to be reset and put in the SLAVE mode.

PC Interface access:

The base address for access to the PC Interface is at A[31..22,20,19]1=0,
A[21,19])=[11}. In addition, A[3,2] are used to access specific resources
within the interface. All accesses to PC Interface registers are longword
accesses, but only D[15:0] are used.

To read or write the FIFO, A[3,2]=[00].

To read the status register or write the control register, A[3,2]=[01].
(The status register may also be read by reading the status latch as described

above.)

To read or write the interrupt register, A[3,2])=[1,0].

54

. e, AR

W—— = venigiiane

-

[= N S e L

PC Interface registers:

Control Register

—_E eI
=Tt 3
OEIMWN

rRFINLnr
| M NeODOO

M
Mo

Aentiand =g T TOT €

[T

~N W
~— IRITO

o IXro

—rN MO

W | M resmomo
— A —4N

O —>—n

G | IV rt Ot

F
w
~

STAT O & 1 - These are general purpose interface bits. A bit written to
STAT 0 or 1 in the Control Register appears as STAT 0 or 1 in the Status
Register at the other end of the interface.

SEND - This bit i1is an enable for the sending of data across the
interface. A 0 written to this bit does not disable the ability to write to
the output FIFO, but does prevent data in the output FIFO from being sent
until a 1 is written to this bit.

RECEIVE - This bit is an enable for the receiving of data across the
interface. A 0 written to this bit does not disable the ability to read data
in the FIFO, but does prevent the FIFO from receiving additional data until a
1l is written to this bit.

RESET - A 1 written to this bit resets the entire interface. The FIFOs
are cleared, zeros are vwritten to 8ll bits of all three registers. (This
effectively clears the RESET command once it has been effected.)

CLK 0,1,2 - These bits set the rate at which output data is clocked
across the interface.

ODD* /EVEN - This bit selects odd or even parity across the interface.

NMST10 - Setting this bit makes a high level on the incoming STAT O the
highest priority interrupt, thus giving the PC priority over any VME
interrupts. (The level of the request as passed to the 68020 is set by bit
15.)

ENINT - This is an enable for PC interrupts.

CLRINT* - A 1 written to this bit clears all PC interrupts. The bit does

not self-clear, so a 0 must be written to this bit after interrupts have been
cleared.

LSELO,1,2 - These bits set the level of the interrupt passed to the

68020 in response to a PC interrupt request. (A request via the STAT 0 line
has its interrupt level set by bit 15 rather than by these three bits.)

55

STOILEV - This bit determines the interrupt level passed to the 68020
(level 3 or 7) in response to a PC interrupt request on STAT 0.

Status Register

RIRIRIR|W|w]u[WIP]IS]S
FIFIFIEIFIFIELETRITLT
AlalFIE|ATAIFIE|R|ALA
X{XPOXIX|FIEls{s[FIELs[s[IT]T
§|3 ¥ T
Yj1]0
3
LL[111[1]1]9]8]7]16]5]4]3]211]0
S[4[3121110

Interrupt Mask Register

RIRIRIR[W]W]W[WIP]S]S
FIFIFIEIF{FIFLE[ATTHT
AlAJFIEJR|AIFIEIR]AIA
X{X]X|XIX]F i€ FIE } 151
Yj1]0
Lit[L{Lfa|i]9)8]7]6]5]4]3]2|1]0
Slaj3f2|110

3.1.2 VPH Control Signals

When performing board level diagnostics or reprogramming PALs, the
following signals may be needed. They are listed for completeness. Should
future WSMR applications call for functional design changes, these sources of
PAL signals will assist in the process. The device and signal names refer to
VPH schematic labels. The schematic is an E-size drawing (3°'°x4’) and is
provided separately from the Final Technical Report.

4-PORT SRAM
68K PORT - /OE2 GROUNDED
/CE2 (FOR EACH BYTE) FROM 4PORTCS PAL
/WR2 FROM U139 (BUFFERED R/W)
ZORAN PORT 1 - /OE4 FROM ZDEC2 PAL (/CEl OUTPUT)

/CE4 FROM ZDEC2 PAL (/CE2 OUTPUT)
/WR4 FROM ZDEC2 PAL (/WRA OUTPUT)

56

P R Wt

g

-k

& - -4

ZORAN PORT 2 - /OE1l FROM 2DEC2 PAL (/CEl OUTPUT)
/CE1 FROM ZDEC2 PAL (/CE2 OUTPUT)
/WR1 FROM ZDEC2 PAL (/WRA OUTPUT)

BLT64 PORT - /OEl
/CE2
/WR2

ZORAN 1 & 2 PRAM

R/W - FROM ZDEC2 PAL (/WRA OUTPUT)
/OE - FROM ZDEC2 PAL (/OEA OUTPUT)
/CE - FROM ZDEC2 PAL (/CE3 OUTPUT)

68K_EPROM
/OE & /CE (FOR EACH BYTE) FROM 68KMEMCS PAL

NOTE: PIN 1 ON EACH EPROM IS SELECTABLE VIA JMP1 JUMPER TO BE EITHER +5V
OR AN UPPER ADDRESS BIT. THIS ALLOWS EITHER 128K OR 256K EPROMS TO BE USED.

68K _SRAM

R/W - FROM U139 (BUFFERED R/W)
ICE & JOE - (FOR EACH BYTE) FROM 68KMEMCS PAL

ZORAN BUS ARBITRATION

Arbitration on each of the 2 Zoran buses is handled by a group of 4 PALs
- ZARB, ZDEC1L, ZDEClH, and ZDEC2. These PALs handle generation of all control
signals related to operation of the bus, including processors, memory (both
local and 4-port), and status latch. RESET is not handled by these PALs.

ZARB PAL - This PAL handles most of the bus arbitration functionms.
Inputs to the PAL include Block Select signals for the Zorans and PRAM on the
bus, Bus Request signals from each Zoran, WRITE signals from each Zoran, and a
R/W signal from the 020.

Outputs include Bus Grant signals to each Zoran, a GEN signal which
enables the 020 to Zoran bus transceivers, ZDDIR and ZADIR signals which
control direction of the Zoran address and data bus transceivers, and 2
qualified Block Select signals which are used by other control circuitry.

ZDECix PALs - These PALs provide decoding and generation of control
signals to the Zorane. The ZDECIL PAL handles the lower-numbered Zoran, the H
PAL handles the higher-numbered one. The control signals these PALs handle are
the Zoran Chip Selects, Data Strobee, Reads and Writes, and the Ready signals.

ZDEC2 PAL - This PAL handles generation of WRITE and Chip enables for

local PRAM, Chip Enables for the 4-port SRAM and PRAM, and a Status Latch
Enable.

57

DSACK GENERATOR

The DSACK generator handles generation of DSACK signals to the 020.
These signale require different timing for the various different memory spaces
in the system. The DSACK generator consists of 2 PALs, DSGEN and ROMPAL, s
small SRAM, and a switch setup for setting default wait cycle lengths.

ROMPAL PAL - This PAL acts as a 9 X 4 ROM containing configuration data
for 8 blocks of memory. A G output serves to disable the 020 address and data
bus buffers when the DSACK generator SRAM is being loaded. The G signal also
acts as an input to the DSGEN PAL for correct DSACK generation during SRAM
loading. A Write Enable is output to the DSACK SRAM, as is an Output Enable. 4
configuration bits (CBIT0-3) are output to the DSGEN PAL.

DSGEN PAL - This PAL handles the generation of the actual DSACKO-1
signals to the 020.

3.1.3 VPH Configuration Procedures

There are a number of hardware and system level considerations to take
into account when configuring the VPH. The following sections will address
some possibly critical issues and outline the procedures for configuring the
VPH hardware. Switch and jumper settings will be treated, as will "software"
configuration of board and system functions.

3.1.3.1 System Controller Selection

In a VME system, slot 1 of the backplane (usually the leftmost slot as
viewed from the front) is reserved as the system controller slot. The board
performing the system controller function drives the VME 16 MHz system clock
line, the IACK daisy chain, and the BG0-3 daisy chains. The system controller
also provides bus arbitration for the system.

The VPH may be configured as either a standard VME board or as the VME
system controller. This 1is accomplished with JMP2 on the VPH board. This
jumper is located near the MVME6000 chip, which is the one with the cooling
tower on it. With the jumper in position 1 (shorting pins 1 and 2) the board
is NOT the system controller. With the jumper in position 2 (shorting pins 2
and 3) the VPH is configured as the system controller.

Configuration of the board's VME bus arbitration module is necessary
vhen the VPH is configured as the system controller. A discussion of how to
do this may be found in the section "LCSR DESCRIPTION".

Please note that a board configured as the system controller may be
positioned ONLY in slot 1 of the VME backplane; a VME system may be comprised
of many boards but only the board in slot 1 may be a system controller.

3.1.5.2 020 EPROM Siszs Selsction

The VPH ie designed so that a number of different sizes of EPROMS may be
used. The EPROMS are socketed in ZIF sockets for ease of code development.
128, 256, or 512 kbit EPROMS may be used by proper setting of JMPl and JMPS,
vhich are located near the EPROMS. The table below indicates proper jumper

58

P U T

Py | e e Ymes

L gy, [AR ety ——— e

settings for each of the three EPROM sizes. Note that position 1 indicates
that the jumper is shorting pins 1 and 2, position 2 indicates that pins 2 and
3 are shorted.

EPROM Jumper Position
Size
(kbits) J¥P1 | JMPS
512 2 | 2

|
256 1 | 2

|
128 1 | 1

3.1.3.3 GCSR Base Address Selsction

The GCSRs (Global Control and Status Registers) are & resource
associated with the VME interface. This group of 8 registers is physically
located on the MVME6000 chip. A detailed description of the GCSR may be found
in the section "GCSR DESCRIPTION". This section is dedicated to setting the
GCSR base address.

The VPH GCSRs, as viewed from the VME bus, are located in the VME’s
Short Supervisory Access space (AM code $2D), which utilizes 16-bit addresses.
This address space is typically partitioned in the following manner.

The upper 8 VME address bits (Al15-A8) are used to define a Group
Address. The next four bits (A7-A4) are used to address a board within a
group. The lower 3 bits (A3-Al) are used to address a specific resource of a
board within a group. This partitioning concept isn’t hard and fast, but many
boards conform to this structure. The VPH’s VME interface GCSRs are located
in this address space, and configuration is necessary to position the GCSRs at
a specific location in the short I/0 space.

The GCSR base address, referred to above as the "group address", is
determined by the setting of S1 on the VPH board. This switch is an 8-pole
DIP switch located next to the top edge of the board. The lowest bit of this
switch corresponds to VME A8; the highest bit of this switch corresponds to
Al5. A switch in the "on" position selects a zero for a given bit, the "off"
position selects a one.

EXAMPLE: To set the GCSR group address to $8Dxx, the S1 switch
settings, from highest (S1-8) to lowest (Sl1-1), would be:

off on on on off off on off

The GCSR board address is configured through software by writing the
desired value for A7-A4 into the register at an offset of $1B from the base
address of the LCSR. (This procedure is covered in the section "LCSR
DESCRIPTION".) The lowest 3 bits (A3-Al) are decoded by the MVME6000 to
access one of the 8 registers of the GCSR.

59

3.1.3.4 VME Slave Address Modifier Code Selection

The Address Modifier (AM) code that the VPH's VME slave will respond to
is configured through a combination of hardware and software means. This
section deals primarily with the hardware configuration; more information on
the software configuration may be found in the section "LCSR DESCRIPTION".

Decoding of the VME AM bits is done by both the MVME6000 and Ul35 on the
VPH board. This has been done in order to allow more versatility in mapping
the VPH into the VME address space than is allowed by the MVME6000 alone. A
discussion of the MVME6000’s AM decoding may be found in the section "LCSR
DESCRIPTION® or in the MVME6000 hardware manual. (Note that the MVME6000
always sees a zero on AM4 regardless of the level actually present on the
bus.) The following section describes the decode functionality of the U135
PAL; two versions of this PAL have been supplied to provide two different
mapping sets for the VPH VME slave. Information contained in this and other
sections should allow creation of additional PALs to provide other slave
mappings.

The function of Ul35 is to look at the AM code present on the VME bus
and determine if the AM code present i1s correct for an access to the VPH’s VME
slave. When a valid AM code is detected, an enable signal (MATCH32) is passed
on to the MVME6000 to enable the VME slave. The MVME6000 then re-qualifies
the AM code, with AM4 presented as a zero regardless of the level on the bus.
This allows the VPH slave to respond to the VME AM codes that the MVME6000
would normally reject.

The "MATCH" version of Ul35 maps the VPH slave to one of the normal VME
AM code sets. In order to enable the slave, the AM code must have the upper
two bits low. The lower four bits are compared to the setting of the switches
on S2 to complete the decode. $2-1 through S2-4 correspond to AMO through
AM3, respectively. This allows the slave to respond to the AM codes in the
range $00 through $0F. However, within this group of AM codes, $00 through
$08 are reserved as is $0C. The MVME6000 can not be made to respond to these
codes. In addition, the MVME6000 is not capable of block transfers, so codes
$OB and $OF are also eliminated. The remaining four codes, their VME transfer
types, and the value that must be loaded to the MVME6000's LCSR $0B slave
address modifier register (020 address $28000B) are summarized below.

AM Code | VME Transfer Type | Register Value

$09 Extended Nonprivileged | ObX11XXO0X1
Data Access

SOA Extended Nonprivileged | ObX11XX01lX
Program Access

$oD Extended Supervisory 0blX1XX0X1
Data Access

$OE Extended Supervisory OblX1XX01X
Program Access

The "MATCHA" version of Ul35 allows mapping of the VPH slave into AM

60

—— e

codes $10 through $1F. These are "User Defined" address regions. Keep in
mind that since the MVME6000 always sees a zero on AM4, the AM code seen by
the MVME6000 will be $10 less than the value actually present on the bus. In
order to ensure response from the MVME6000, it is recommended that only codes
$19, $1A, $1D, and S$S1E be used. It is possible that other AM codes within
this block would be acceptable to the MVME6000, but this would have to be
established through experimentationj it is easier just to utilize one of the
four prescribed patterns. These AM codes and the Address Modifier Register
values are summarized below. Note that all VME transfer types are actually
"User Defined" - the transfer type shown i1s the type assumed by the MVME6000.

AM Code | Transfer Type | Register Value

- - . D - e - - P P S P P R R WD S

$19 Extended Nonprivileged | 0bX11XX0X1
Data Access

$1A Extended Nonprivileged | ObX11XXO0lX
Program Access

$1D Extended Supervisory 0b1X1XX0X1
Data Access

$S1E Extended Supervisory 0b1X1XX01X
Program Access

Other mappings are certainly possible. DO ROT ATTEMPT TO MAP THE VPH
SLAVE INTO ANY 16- OR 24-BIT ADDRESS SPACES! The VPH’s address decoders
require a full 32-bit address even though most of its resources are located
within the lower 24-bit region. An attempt at mapping the slave into a 16- or
24-bit address space will likely result in system failure, since the upper
address bits may not appear as expected. (One would expect the upper bits to
be a sign extension of the 16- or 24-bit address, which for most 24-bit
accesses would work. But if the upper bits float high, or if the sign bit is
a "1l", accesses would fail.)

New design files for U135 could be created easily to make the VPH slave
respond to any of a group of AM codes. As an example, a possible alternate
design file is shown below which would allow the slave to respond to any
combination of AM codes $19, $1A, $1D, or S1E. (The appropriate value loaded
to the slave address modifier register would depend upon the selected codes;
0bl111XX01l would work for any selected combination for this example.) The
function of S2 is shown below.

§2-1 Enable accesses on AM code $19 when "ON"
§2-2 Enable accesses on AM code $1A when "ON"
82-3 Enable accesses on AM code $1D when "ON"
82-4 Enable accesses on AM code $1E when "ON"

For instance, to allow slave access on codes $1D or $1E, turn switches 1
& 2 off, switches 3 & 4 on. The following PAL file for the MATCHE PAL is vital
to future changes to the VPH. It is included (verbatim) for complete
understanding.

61

$ PALASM DESIGN DESCRIPTION

R ettt Declaration Segment-----------~
TITLE MATCH32 AND MATCHGCSR DECODER PAL

PATTERN MATCHB.PDS

REVISION 00

AUTHOR LABRY HALL

COMPANY SPACE TECH CORP.

DATE 07/31/92 $

CHIP MATCH PAL22V10

THIS PAL GENEBATES TWO ENABLE SIGNALS WHICH ARE
USED BY THE MVME6000 TO DETERMINE IF AN ADDRESS
ON THE VME BUS BELONGS TO AN ON-BOARD RESOURCE.
IT ALSO PERFORMS 020 BUS ARBITRATION BETWEEN THE
020 AND THE 6000, AND PROVIDES A 10 MHZ CLOCK FOR
THE 6000 BY DIVIDING THE 20 MBZ CLOCK BY TWO.
JMATGCSR INDICATES THAT THE 6000*S GCSR IS BEING
ACCESSED. /MATCH32 INDICATES THAT THE VME IS
ACCESSING THE VPH'S 32-BIT ADDRESS SPACE. THE
/MATCH INPUT IS THE OUTPUT FROM A 668 COMPARATOR
WHICH COMPARES THE A08-A15 BITS TO A VALUE SET
ON AN 8-BIT DIPSWITCH WHICH DEFINES THE "GROUP
ADDBESS* OF THE GCSR IN THE VME SBORT ADDRESS
SPACE. CLK 1S THE 20MBZ CLOCK. THE B0-B3 INPUTS
ARE FROM A DIPSWITCH USED TO DEFINE THE AM CODE
USED TO ACCESS THE VPH FROM THE VME. THIS AM CODE
IS REQUIRED TO HAVE BIT 5 LOW AND BIT 4 HIGH. THE
ACCEPTABLE AM CODES ARE SUMMARIZED IN THE TABLE
BELOW, ALONG WITH THE VME BUS SPEC'S DEFINITION OF
THE AM CODE SEEN BY TBE MVME6000 CHIP.

Rl L L L L T T Ty Sy G SRR P

$19 EXTENDED RONPRIVILEGED DATA ACCESS
$1A EXTENDED NOWNPRIVILEGED PROGRAM ACCESS

'l $1D EXTENDED SUPERVISORY DATA ACCESS
$1E EXTENDED SUPERVISORY PROGRAM ACCESS

W W WS e W W W s BE W W W We Pr WI W We wWe W W W W we W WS

/BGACK IS USED BOTH AS THE /BGACK INPUT TO TEE 020
AND AS THE /PBC INPUT TO THE 6000. /BR IS THE /BR
INPUT TO THE 020. /DSACKO-1 ARE THE 020 /DSACKO-1
LINES. /BG IS FROM THE 020. /PBR IS FROM THE 6000.

w e @ @ e we

jrmccccccnccccccanaa PIN Declarations -----ccccceaca-o

PIN 1 CIK 3 INPUT
PIN 2 AMO 3+ INPUT
PIN 3 AM1 + INPUT
PIR &4 AM2 s IRPUT
PIN 5 AM3 3 INPUT
PIN 6 AMs s+ INPUT
PIN 7 AMS s INFUT

W we W W0 W G We W W Ws WO We W Wt W we W W W ws

- e

——g

—at

-

m——

DS SN saaet e e

PIN 19

/As

/BO

/81

/B2

GND

/B3

/MATCH

JMATGCSR

/BGACK

/BR

/MATCH32
CLK10

/PBR

/DSACK1

/DSACKO

/BG

vce

EQUATIONS
MATGCSR =
MATCH32 = [AM5 * [AM4 * AM3
+ [AM5 * [AM4 * AM3
+ [AM5 * [AM4 * AM3
+ AM5 * [AM4 * AM3
BR = PBR * /BGACK
BGACK -
+ BGACK * AS
+ BGACK * DSACKO
+ BGACK * DSACK1
+ BCACK * PBR
CLK10 = /CLK10

*
*
*
*

we ws we ws ws we

s INPUT
COMBINATORIAL ; OUTPUT
REGISTERED ; OUTPUT
REGISTERED 3 OUTPUT
COMBINATORIAL 3 OUTPUT

REGISTERED ; OUTPUT

3+ INPUT
3 INPUT
s+ INPUT
s INPUT
3

AM5 * [AM4 * AM3 * AM2 * [AM] * AMO * MATCH

JAM2 * [AM1 * AMO * BO
JAM2 * AM1 * [AMO * Bl
AM2 * [AM1 * AMO * B2
AM2 *+ AM] * [ANG * B3

PBR * BG * /AS * /DSACKO * /DSACKl

R R D T T T T e L L L T T 2

It is expected that the need will exist to develop a wide range of
application code for the VPH in the future.
with any type of an operating system, the system programmer developing code
for the VPH needs to be aware of proper resource initialization procedures for
Such initializations are necessary at power-up, and
possibly at any other time that the VPH is "reset" or reconfigured as required

by some process. The following section discusses these considerations.

various VPH resources.

3.1.3.5 Initialization Considerations

63

Since the board is not supplied

At power-up or other reset, the VPH's 68020 will begin execution at
address 0 in EPROM. The initialization sequence is the standard sequence as
described in the 68020 User's Manual; the first few locations in EPROM contain
initial stack pointers, the execution start address, etc.

It is recommended that the boot sequence for the 020 load the SFC and
DFC registers with $3, as this is the function code used for accesses to VME
via the MOVES instruction.

If the PC interface is to be used, the control registers for the
interface must be set up appropriately. See sections on the PC interface for
more information.

When the VPH wakes up, the DWB bit at 020 address $200002 will be
asserted. This causes the VPH to request the VME bus and, once granted, will
not release until the DWB bit is negated. This should be done early in the
boot sequence so as not to interfere with other boards’ ability to complete
their boot sequences. Negating the DWB bit may be accomplished by doing a
byte read of location $200002 in VPH local memory space.

Proper initialization of Local and Global Status Registers will be
required before the VPH's VME slave and/or master will function properly.
Information on the MVME6000’s LCSR and GCSR may be found elsewhere, either in
this document or in the MVME6000 User’s Manual. There is no hard and fast
rule as to how to set up the MVME6000; the necessary initialization will
depend upon the application and overall system configuration, and must be
determined by the system programmer.

One thing that will need to be done in nearly any situation at boot is
to clear the BRDFAIL bit in the System Controller Configuration Register in
the LCSR. If this is not done, the SYSFAIL line on the VMEbus will be
asserted, which will bring the system to its kneee before it ever gets up and
running. This negation may be accomplished by a byte write of $4 to 020
address $280001.

It is good practice to clear the Zoran interrupts, reset the Zorans, and
clear the 020's status bits at boot. This may be accomplished by writing zero
to 020 longword location $1C0000 and $F to $1C0004.

Also necessary at boot is loading configuration data to a couple of
locations in the DSACK SRAM. These locations are for accesses to the MVME6000
and/or VME bue, and the PC interface (if used). The following code segment
will accomplish the DSACK SRAM initialization.

MOVEA.L #$20000000,A0 3DSACK SRAM ENRABLE ADDRESS
MOVEA.L #$60000000,A1 $DSACK SRAM DISABLE ADDRESS

MOVEA.L #$240000,A2 $PC INTERFACE BASE ADDRESS

MOVEA.L #$280000,A3 sMVME6000 REGISTER SET BASE ADDRESS
MOVE.L #0,(A0) jENABLE DSACK SRAM

MOVE.L #8$4,(A2) $WRITE CONFIGURATION NYBBLE TO SRAM
MOVE.L #$1,(A3) $WRITE CONFIGUBRATION NYBBLE TO SRAM
MOVE.L #0,(Al) 3sDISABLE DSACK SRAM

64

£

o

P

oS eeeass Wt ARG casmme e

Yy A sonl NS e —— N,

3.1.4 VPH Installation and Setup Procedures

The following procedure describes the installation and setup of the VPH
and SBC. It shall be used for a cold start sequence (e.g. the unit directly
out of the box). The instructions are also useful when the board settings of
either the VPH or the SBC have been changed. Before any of the following
steps are taken, you should read and study the VPH User Manual, the MVME6000
manual, and the SBC Manual for the 135 board. A thorough understanding of the
address spaces of each board will be necessary if hardware or software
modifications are to be made. This will help prevent inadvertent address
space overlap.

MODE 1: SBC system controller/VPH non-system controller

1. Set the VPH switches as follows

sl 1-8 all off (address map)
82 1l-4 off on on off (AM code mods)
83 1l-4 on off of off (default DSACK wait

states, used in
expansion bus)

2. Set VPH jumpers as follows

JMPR1 (set for EPROM size)

JMPR2 short 1 and 2 (VPH non-system mode)

JMPR3 (set for # of Zoran ext
memory access wait states)

JMPR4 (set for # of Zoran ext
memory access wait states)

JMPRS (set for EPROM size)

3. Set the SBC switches as follows
s3 1-8 #4 on, all others off
s4 1-10 4, 8, 9 on, all others off

You are now configured for the SBC to operate as system controller.
Plug it in slot #1 (left most slot of chassis). 135 Dbug will run at its base

DRAM address. The SBC is configured to operate with 32-bit address and 32-bit
data.

3.1.5 Typical VPE Operation

The following sections describe the typical execution sequence that is
recommended for the VPH 325 chips. The current set of application code has
adhered to these procedures. They serve to provide a uniform basis for future
coding practices and will maintain better documentation if consistency 1is
applied to the programming methodology.

The major programming convention is necessary to ensure that the four
325 chips initiate activity simultaneously. 1In this manner the code executed
by each chip will start at the same point in the programs and end at the same
point in the programs. Zorans describe execution across multiple chips as
waves. Hence, synchronization of the wave processing is desired. We say that
& chip or a set of chips completes a wave when each and every chip has
executed its code segment relative to that wave.

65

Synchronization is depicted in Figure 15. Here, a starting routine is
executed first. 1In the current suite of code, a routine called STARTUP.ASM is
used for most of the applications. It is a generic routine for any of Zoran’s
application libraries as well. Startup initializes the status bits in the
status latch so that the 68020 or 020 can synchronize Zorans. In startup the
Zorans do not modify the status bits. In a polling loop, the 020 will modify
these bits when it is ready to initiate Zoran starts simultaneously.

Once the 020 sets the status bits accordingly, the 3258 begin wave 1
processing. Wave 1 processing consists of any routines a user wants the 325s
to execute such as convolution or FFT. When every 325 that is processing has
completed their tasks, they individually set their status latch bits. Now the
020 has been monitoring all bits in a poll status loop. Upon detecting that
each and every 325 has completed wave 1 tasks. the 020 modifies the status
bits to allow the 3258 to begin wave 2 processing.

Figure 15 depicts only two waves, but the concept is not limited to only
two waves. As many waves or routines as are desired may be used in this
method. Further, the waves may be any routines desired by the user. They do
not have to be the same code.

Another important programming convention is the consistent usage of the
stack frames as depicted in Figure 16. The example discussed assumes that two
325s are sharing the same bus, probably 325s 1 and 2 using PRAM 1. The
convention should be followed nc matter how many 325s are used or how many 325
buses. The two key 325 registers are the stack pointer (SP) and the program
counter (PC) of each 325. To synchronize execution across multiple 325s, it
will be necessary to start them with correct program starting addresses.
Those are popped off the stacks. A stack frame will then consist of addresses
for important locations like the program starting addresses, locations of
parameters to pass into and ocut of the routine or subroutine.

Those addresses are found in the MAP file of the code relevant to the
current application. They are generated by the Zoran 325 assembler process.
Each address must be linked into the program, so a specific procedure is
followed. The Zoran Assembler Manual explains the method. The current
application library has adhered to this procedure in every program.

The typical execution begins with each 325 with the correct PC and SP
value in them. Note that the SP points to the first location below the
starting location. Upon initiation of execution, the SP is incremented first
and then the value is popped off the stack. The 4-port serves as the data
space for each 325 which the stack pointers 1 and 2 (or as many as you need)
point to. The PRAM contains the actual routine used in the current
application. The code should always start at location 0000 as this makes
assembly easier. Also, keep sufficient epace between each stack pointer in
the PRAM so that the 3258 do not inadvertently write into your stack (as might
occur with an interrupt).

66

START

POLL STATUS

READY

WAVE 1

SET STATUS

READY

WAVE 2

SET STATUS AND HALT

Figure 15. Synchronisation

67

P1
_vs PRAM 7’V - Z

PARAMETER PASSAGE CONVENTIONS

A

$SP STACK 1 FINISH

$PC ROUTINE 2
STACK 2 | PARAM1

VSP2 \ SYNC

$SP ROUTINE 1
CODE -

PEe ¢ .

' -r_or]._ 4

porr ||

Figure 16. Parsmster Psssage to Routines VIA Stacks

68

P

A typical stack frame is shown on the left of Figure 16. Two routines
are assumed, each with a synchronization call and list of parameters. The
last routine will also execute a STC provided FINISH routine. FINISH cleans
up the status latch bits to indicate to the 020 that the wave(s) by all 325s
have been executed. The 020 then uploads the results into the correct &4-port
space. This activity is shown in Figure 17. Again for consistency, all
current programs follow this activity flow. Near the bottom of the chart is a
decision box. If more routines are to be executed, the resultant path depends

on the routines invoked. Typically, the path continues up to set 325 mode
bits.

3.1.5.1 S8System Bootup

To bring up the VPH system with the 68020 monitor program, just turn on
the power. If the VPH stops responding for some reason, it can be reset with
the reset switch found on the board itself.

3.1.5.2 Initislization

If the 1o monitor program with a PC is being used, it is important to
set up its status register manually. Then the Zoran interrupts must be
cleared and the Zorans must be reset again. The steps for this are as
follows. Keystrokes are shown in square braces.

1. set the port to the status register [P 362 <CR>]

2. clear the interface by writing ones [W FFFF <CR>]

3. set up the correct status values [W 186C <CR>]

4. set the port back to the FIFOs [P 360 <CR>]

5. clear the interrupts with a poke of 0 to address 1C000
(W 12 <CR> W 0 <CR> W 1C <CR> W 0 <CR> W 0 <CR>}

6. reset the Zorans with a poke of F to addrees 1C0004
[W 12 <CR> W 4 <CR> W 1C <CR> W F <CR> W 0 <CR>]

If a script is being used, all of these operations can be conveniently
performed by a single call to the Init() function.

3.1.5.3 Transfer Programs to Zoran Program RAM (PRAM)

If the io monitor program is being used, programs can be downloaded with
the Download command. As an example, assume that the file fft2d32.s is being
downloaded to PRAM1 and PRAM2, which start at addresses 100000 and 180000.
The command sequence would be

(D ££t2d22.n <CR> 100000 <CR> D fft2d32.s <CR> 180000)

If a script is being used, programs can be downloaded with a call to the
Download function. For the example, the call would be

Download("f£ft2d32.s", 0x100000);
Download("££ft2432.8™, 0x180000);

69

CALL INIT FUNC TO INITIALIZE 3258

DNLD S FORMAT DATA AND CODE

SET 326 MODE BITS

SET SP OF EACH 8254 TO POINT
TO ITS OWN PARAMETER STACK

[CLR STATUS REGISTER

START ALL 3258 AT ZERO

SET STATUS BITS TO ENABLE EXECUTION

POLL STATUS FOR COMPLETION

NO MORE ROUTINES YES§ ————

SET SP TO NEW PARAMETER STACKS

UPLOAD OUTPUT

FROM 4 PORT

Figure 17. Typical VPH Activity Flow Chart

70

Macro definitions can be used to simplify this to

#define PRAM1 0x100000
#define PRAM2 0x180000
Download(“£f£ft2d32.s", PRAM1);
Download("fft2d32.s", PRAM2)j

3.1.5.4 Data Transfer to/from Four Port Memory

If the io monitor program is being used, data files can be downloaded
with the Download command as well. These files will generally be ASCIIL
hexadecimal files. 1If the Zoran or Motorola assemblers are used to create
data files to go into the four port memory, an address offset of zero is used
instead of the values here. This is because the S§ format files already
contain the correct addresses for each record. This was not the case for the
program files being transferred to PRAM because address zero in the PRAM
appears at 100000 or 180000 in the 68020 address space. Here is an example of
downloading a data file to the four port, which starts at address 80000.

(D £ft2d32.dat <CR> 80000 <CR>]

With a script, this would be performed by a call to the Download
function as follows.

#define FOUR_PORT 0x80000
Download("f£ft2d32.dat", FOUR_PORT);

For uploading results, the Upload command 1is used. This command
requires a size in longwords and produces an ASCII hexadecimal file as output.
From the monitor, the command to upload the 2048 (800 hexadecimal) longwords
of results of the f£ft2d32 program from four port would be as follows.

{U 80000 <CR> 800 <CR> fft2d32.out <CR>]

With a script, this would be performed by a call to the Upload function
as follows.

Upload(FOUR_PORT, 2048, "fft2d32.out");
3.1.5.5 8Setting the Zoran Registers

The Zoran internal registers can be accessed from the 68020. Each Zoran
is mapped into a different set of memory locations. These are documented in
the hardware memory map, but will be repeated here for convenience. Zoran 1
is at C0000, Zoran 2 is at Cl000, Zoran 3 is at 140000, and Zoran 4 is at
141000. The register offsets from these starting addresses are listed in the
Zoran Engineering Data Manual. These offsets must be shifted left two bits to
convert them from addresses of longwords to addresses of bytes. Some of the
more important resulting offsets are the stack pointer at 414, the program
counter at 404, and the mode register at 408. A specific Zoran register can
be asccessed by adding the offeet to the starring address. For example, the
Zoran 2 stack pointer is at address Cl4l4é. To write the value 33 to that
stack pointer from the monitor would require the following commands-

71

[W 12 <CR> W 1414 <CR> W C <CR> W 33 <CR> W 0 <CR>]

To perform the same operation from a script would require a call to the
Poke function with appropriate parameters.

#define ZORAN2 0xc1000
#define SP_OFFSET 0x414
Poke(ZORAN2 + SP_OFFSET, 0x33);

Similar methods are used to write to the other registers. Writing to
the PC causes the Zoran to begin executing at the address written. The mode
register has many bits which should not be altered. The initial state is
acceptable. If speed of execution is important, the number of wait states for
memory access can be reduced from one to zero by writing the appropriate
value. This is performed from a script as follows.

#define MODE_OFFSET 0x408
Poke(ZORAN2 + MODE _OFFSET, 0x70£251);

3.1.5.6 Accessing the Status Latch

The 68020 can modify its status latch values by writing to address
1C0000. The status latch bits are the bottom two. The 68020 can interrupt
the Zorans by setting higher bits in the same location, so only the bottom two
bits should be set when modifying the status latch. Commands from the monitor
to set the upper status bit (status value 2) would be as follows.

[W 12 <CR> W 0 <CR> W 1C <CR> W 2 <CR> W 0]

From a script file, the same operation would be performed with a call to
the Poke function.

#define STATUS LATCH 0x1c0000
Poke (STATUS_LATCH, 0x2);

The 68020 can read back the status latch, but it will not contain the
value that was written. Instead it will contain the values written by the
Zorans in the bottom byte. To read it from the monitor would require the
following commands.

{W 1l <CR> W 0 <CR> W 1C <CR> R R]

To read it from a script program and assign its value to a variable
would require a call to the Peek function.

long values
value = Peek(STATUS_LATCH);

All processors write to the bottom two bits of the status register.
When they read from the status register, they see the values written by the
other processors. The 68020 sees ths valuss in the order Zorané bits, Zoran3
bite, Zoran2 bits, Zoranl bits, listed from most significant to least
significant. Each Zoran sees the values in an order that is symmetrical with
respect to itself and the bus it ie on. Most importantly, the 68020 bits are

72

. ,
(L2

Acmerd isssupl] 0 eeestwemd eeamesd

seen at the same place by each Zoran. This allows more convenient coding for
communication. The order is opposite bus high Zoran, opposite bus low Zoran,
same bus other and Zoran, 68020 bits.

3.1.6 VPH Scripts

The VPH is delivered with a set of applications programs found in the
appendices. Some of these programs have been collected into a type of "main"
program called "scripts™. A script is an organized collection of routines and
subroutines that eliminate many of the keystrokes needed when a Command
processor like the io monitor used by STC to demonstrate the VPH is invoked.
A script assembles all of the necessary commands into a single command entry
which is typically the filename of the application itself. For instance, if
an FFT program were to be executed, several commands to the command processor
are necessary. They are the data space setup commands, the status latch setup
commands for the 68020 and the 325s, download commands and upload commands for
the results. Six scripts have been provided with the VPH, including 2DFFTs
for 8x8, 16x16, 32x32, a lk FFT, real and complex convolution and correlation,
and coordinate conversion routines.

3.2 CPH Functional Units

From a programmer’'s perspective (Figure 18), the CPH consists of two
multipliers and two ALUs conmnected to cache and auxiliary memory via a
crossbar switch. It is important to note that the crossbar switch is fully
programmable in one clock cycle. Also, it is a fully parallel gateway. All
selected paths are available in one clock cycle. FPurthermore, the crossbar
has an internal register file which is available to any other resource.

The address generation is performed by a separate board called the
address generator board. Details of this board are described elsewhere. The
address generator board contains a set of crossbars also. Microprogramming
the CPH consists of using the 784-bit microword depicted in the appendix. All
fields are simultaueously available. Hence, the CPH is a true Very Long
Instruction Word machine (VLIW). Because the multipliers are faster than the
memory chips, one stage of pipelining is added to all data paths and is shown
in the figure. Mi:rowords are emitted as two phases of 768/2 or 384-bits.
The machine definition file in the appendix for the CPH shows which fields are
active in each phrse. When a field is active in both phases, the ASSIGN
statement is repea‘ed for those fields except that the physical bits differ
per phase.

73

60

[_ | _
¢ 10N L nn T nwv L v

A N ~ N " N " N
[waisiow o] [waiso3u x| | [uausow A] [usisosw x| | [uzisoay a | [umsozw x| | [u3so3y o] [ussosy x |

T — 1 — 1 — 1 —
WALSOIU 1g] [UESO o] | [H3ISHI I,] [WUSHN 1y [(usEaH 1] [HASOWN 1, HLISIO3N t4] [WGISOH Tg]
¥1SO38 0] [¥ALSOIW Og] [43ISP3u 0] [UALSOH O [WELSHIN 04 [uaLSOI 04 [MRISE3Y 0g] [wE1SOT 04]

T r 1 T 41 r 1 1 1

Yvassow ViV .
! ! T 1 | T 1 11
(43151934 1] [W3USOIN 14 3] {__Suilsio3y | 3NMadid — |} | [_SyUSORN [3NNdd |
[Mso3u 0] [WASET O e T T T 1T T 1
1 FA"] k) a3 [} 8 v W
& 7Y AVHNY ANOWIM XNV AVNYY ANOFGA 3HOVD
¥ALSIO3Y SO 7] g 2 g 2
¥EAI3OSNVAL| [M3ABOSNvaL Te vl T T 1 T
H H NP (sdiiso3w 3nm3dd] | [[__Su3iso3w snnsdd |
~ »
S180d 0/1 su@ vo 1 T
4 HRUSHN

(Eiso3w 6] (wusoiw o]
1 1

4SO tg] [H3USOI 14
HAISIO3YH Og| [¥3LSOIM Of

. r

CPH Programmer’s Model

Figure 18.

74

3.2.1 Processor

The processor board is the numerical engine of the CPH architecture.
Each board contains 2 BIT 2110 ALU devices and 2 BIT 2120 Multiplier devices.
They are connected to other resources via nine xbar devices. Nine are used so
that parity can be generated. Otherwise the 32-bit space would only require 8
xbars on the processor board. The organization is shown in Figure 18. It is
useful as a programmer’s model because it details the port assignments for
each xbar and the microinstruction fields relevant to each port.

From this figure we see that the architecture is a two phase pipelined
organization. All resources have the capability to pipe two levels of data.
This was done so that the slower memory devices can conceptually keep up with
the faster 2120s on the processor board. It is important to note that the
ALUs do not have on-chip registers. So an external register file is provided
which ie embedded in the XBAR chips as a 64 word file arranged in an 8x8
array. The register file is general enough to allow FIFO, shift left and
right operations to them. These are called register mode operations fully
described in the xbar section of this report.

The processor board contains a writable control store for the control
points on the board. Twelve microprogram memory modules are used. They are
partitioned into real and imaginary fields and are signified by "MEM72" labels
on the schematic. The WCS instructions are chosen so that complex arithmetic
operations are facilitated by their respective real and imaginary parts. The
WCS is downloaded from the IOP board. A WCS allows dynamic microprogramming
so that multiple microroutines can be executed without excessive host
interaction. The modules have been designed, fabricated and tested. A spare
module also 1s being supplied. These modules are also identical to the WCS
modules in the address generator board where the EVA master control store
resides. The WCS essentially supports reconfigurability of the ALUS and
multipliers by microprogram control. Some of the options are depicted in
Figure 19. Those shown often are useful for inner and outer product
operations on matrices.

The current status of the processor board design will require adding
error FIFO flags (only if arithmetic status conditions are needed) and ECL
clock distribution circuitry to the board. All other data and control paths
have been assigned and entered into the schematic. Should a slower clock be
used, ECL logic can then be replaced with CMOS clock distribution nets. The
design will become much simpler in the process. Also, the high speed IO or
HSIO control circuitry needs to be added to the schematic.

The original Phase 1 design for this board relied on the availability of
end around carries being generated by the ALUs and multipliers. End around
carries are necessary for two's complement arithmetic. However, when the
final data specifications were completed by BIT, this signal was not provided.
Hence, cascading these 32-bit chips via 32-bit boards became impossible. The
current design then doubled the number of engines per board so that each board
could behave as a 32-, 64- or 128-bit board under microprogram control. In
this way, reasonable emulation speeds could be maintained and across-a-bus
delays are eliminated.

75

1 er— Er-

Sy
Sl
1

Figure 19. Dynamic ALU Configurability

76

The current processor board design connects the xbars to the cache
memory via the CPH backplane as shown in the CPH Physical Layout in Figure 20.
This figure is important when maximum execution speed is desirable in the
microprograms. The slowest path will always be the one which takes the data
off the board. Hence, when writing new microcode, the user should realize as
showm in the figure that the cache accesses will take place across the CPH
backplane. The same is true for the I0 path obviously.

3.2.2 Cache Memory

The cache memory board is a versatile module for the CPH. It is
designed to be cascaded so that memory space is limited only by the physical
dimensions of the mainframe space. This cache can also be viewed as the main
memory space of the EVA. It uses cache memory modules which have been
designed, fabricated and fully tested. The board itself which houses the
separate modules has not been fabricated. Each module is a SIMM or strip of
discrete memory chips mounted on a small circuit board as shown in Figure 21.
Fabricating the SIMMs this way allowed us to design very dense cache memory
boards.

The individual memory cells of the modules uses a 3-port cell scheme as
depicted in Figure 22, Here, we see that data ports A and B are output ports,
while data port C 1s an input port. This is important to remember when
microcoding the CPH because certain ports are only read and others are only
write ports. The fields in the microinstruction reflect these conventions
also. Note that the clock timing is a &4-phase clock with two phase 180
degrees out of phase and the other two clocks in quadrature with these two
phases. A 4-phase clock scheme was chosen to maximize throughput of the
modules. The cache memory bue timing also follows in Figure 23. Bus timing
evaluation is necessary to complete the backplane clock distribution design.

The cache memory board is currently in design and its schematic is
nearly 751 completed. 1Its RAM timing has been fully specified by Figure 24.
Here, it is important to note that the 4-phase clock is still needed on the
board itself. Also, when future microcoding starts, the code should observe
the timing delays to be encountered by the clocks. For example, the last line
shows that the "A DATA OUT" eignal will generate the most significant data
word first followed by the least significant data word. When microcoding the
cache accesses, the coder should realize this multiplexing of the MS and LS
words.

The cache memory board can be configured as follows:

Memory block - 16k X 36 (or 64j X 36) unit of memory. A jumper should
reside on the board to set the size of each of the two blocks resident on the
board. Pinouts of Cache Memory Modules are identical for both possible sizes
- the only difference is that the two MSBs of the address are not used on the
16k modules.

Memory bank - a 256K deep region of memory. There may be a maximum of
16 banks each of Cache and Auxiliary memory.

77

immediate Data
(from microcode)

REGISTER 1/0 Connectors
MULT 1 MULT 2 ALU 1 TRANSCEIVER
X Y 7 X Y 7 X X Y 2Z REGISTERS
I] l] | l I I l [] l
013014 110 010 09 19 01 02 n 03 08 12 1on 1012
12 by 14 Crossbar With Register File ‘
From Cache From Aux To Cache To Address Ports
14 15 16 17 04 05 06 07

P— e e "

[1T

CPH Backplane Connector

r]l* v 4 Yy
|

|}
< _ CPH Backplane >

Pigure 20. CPH Physical Layout

78

—+5v

REG 4 CLK1'

..

...

..

..
..

...

...

Pigure 22, 3-Port Cells

80

¥ X0
¢ M0
¢ A0
L M0

T

A1

L 1T

AT

(VIvd S1XV1VG SAY

1NO viva 3
1N0 viva 8

(VIVQ S1XVLVd SAY

{viva STXvivd SRy

1IN0 viva v

(mﬂ«.o SIXV.iva @v

Ni @ vivad
NI O Vivad

J¥1va SIXVLVE m:v

{a ¥aav X G_yaav

NI @®8 SS3daqv

{v_yaav X9 mooﬁT

NI O%®v SS3yaav
NI 3AQv XNvE

{3 ¥aav)—

aav INVE) » 3 ss3waav

R4

¢—— su 0g —>'

A

W SS3¥aav__) NI W SS3yaay

Cachs Memory Bus Timing

Figure 23.

81

¥ X0
€ M0
Z
N

] [R I L B L A
N I S I L1 | : M
{VIvd SIXVIvd SN} : . 1n0 viva V
: { VIva . 41N0 VIVO v
—— 7t
[\ -
{v_¥aav X0 ¥aav)- M . SS3WAQV NV
{_vivas1__) : :
i (_Vivasn__) . :
CASED)® : ISNI Qv3y
{0 3Lm) “ © 1SNI LM

b
o] Sy

|

NI YLVd AVY

{V1va STXViVa SH} © NI O V1va@

(v Eaav m :

(v_uaav)- : .V SN@ SSIyaav

{0 ¥aav }— : . 0 sna ss3waav

{v_y¥aav X0 _¥aav }— . NI O%V SS3yaav

: : . SS340av XMNvE
v W8} N1 3 ss3uaav

‘¢—— SU 0§ ——'

82

Cache Memory - RAM Timing

Figure 24.

Both blocks of memory on each cache board must be configured as either
cache or Auxiliary.

Address ports -

Port A - Cache Complex Read Port
Port B - Cache Complex Read Port
Port C - Cache Real Write Port

Port D - Cache Imaginary Write Port
Port E - Auxiliary Memory Port

Port F - H.S.1.0. Port

Data ports

Port A - Cache Real Read Port A - Cache Imaginary Read

Port B - Cache Real Read Port C - Cache Imaginary Read
Port C - Cache Real Write

Port D - Cache Imaginary Write

Port E - Aux. Real Read Port E - Aux. Imaginary Read
Port F - HSIO Real (R/W) Port F - HSIO Imaginary (R/W)

Address port pairs A & C and B & D are time-multiplexed (they are
physically the same backplane pins). During clock phase 0, ports C and D are
sctive; during clock phase 1, ports A and B are active.

In addition, time multiplexing exists on the E address port. During
phase 0, address port E carries bank addresses. Bits 0-3 are the cache bank
address and bits 4-7 are the aux. bank address. During phase 1, address port
E carries an aux. memory address.

The 8-bit configuration address, which is used to address each cache
board uniquely during the system configuration process, may appear on either
address port A, B, C, or D. This is your choice. The configuration address
of each board ie set for each board on a dipswitch.

In addition to bank address and selecting either cache or aux. memory,
configuration data must include whether a block of memory is the most or least
significant word. Also, the offset into the bank will be required for each
block.

Separate decoding circuitry will be required for cache, Auxiliary, and
HSIO addresses. Because the limitation exists that a given bank of memory
may not be acceesed -y the processor and the IOP at the same time, if a valid
cache or sux. bank address is presented to the board, the processor addresses
are captured by the first level of decode circuitry, regardless of whether a
valid HSIO address is present or not.

There are 4 bits of microcode resident on each board for each of the

two clock phases. These bits are active /WRCAr, /WRCAi, /WRAUXr, and /WRAUXi
during phase 0, and /RDA, /RDB, /RDEr, and /RDEi during phase 1.

83

3.2.3 Addrese Gensrator (AG)

A considerable effort was expended to enhance many of the address
generator’s circuits. High speed ALU and memory chips finally arrived by
March 1990, but development of the required "glue logic" chips lagged behind.
The address generator requires 16-bit wide counters and adders capable of a 40
MHz clock rate. These parts were unavailable in 1990. Many times, PALs could
have been used to implement functions not available as standard devices. New
larger and higher speed PAL type of devices have only recently been developed.
Unfortunately, they are still too slow. The smaller PAL devices are capable
of high speed, however, it is necessary to cascade multiple devices together.
The combined delay was too great. The devices large enough to fit these
functions on a single chip were too slow.

Several companies had large high speed PAL devices under development
during 1990. Cypress, AMD, Plus Logic, and Altera released new devices that
year. Some of these new parts are now fast enough to solve many of the speed
problems. Also, Integrated Device Technology plans to make available many
standard logic functions in a new high speed BiCMOS technology.

The address generator is designed to support multiple matrix addressing
tasks directly in hardware. The purpose of the AG board is to reduce the
overhead normally incurred by computing complex addresses in software. To
keep the overhead down, 4 2-D counters are available on the board to assist
memory access in a matrix. A dataword can be accessed randomly, in a row,
down a column, down a diagonal, down a subdiagonal and all of the sbove in the
opposite direction. The 2-D counter circuits are depicted in Figure 25.

The 2-D counters are designed with IDT?7381L20 high speed adders. These
adders were to be found in a Plus Logic 2040 FPGA but the 2040 did not become
available during this Phase II effort. The IDT7217L25 multipliers are used
for address offset computations executed directly in hardware. This hardware
address generation method reduces the overhead of complex address generation
to a minimum. Although the AMD 29540 is shown in the figure, the device has
since been deleted from AMD inventory with no second sourcing. Should future
availability occur, then these devices should be incorporated in the position
shown in this figure. A discrete logic implementation of this device was
executed. Over 40 16-pin devices are needed. Hence, the FFT hardware address
generation feature of the CPH had to be deleted.

It is done by preloading the counters with the appropriate starting
address and counting up or down as required. Control is accomplished with
fields in the microinstruction such as 2-D counters #1, #2, #3, and #4. The
microorders are fully parallel across the 4 counters. As 8 result, 4
concurrent addressees can be generated and sent anywhere in the CPH by virtue
of the crossbar switch. The block diagram of the AG board follows in Figure
26. The AG board houses the microprogram control unit for the CPH. Here, one
finds the microsequencer control for program control. Another microprogram
memory resides on the processor board but this is simply writable control
store. Once a program is downloaded to the processor board, execution of
microinstructions on that board follows sequentially.

84

e

et ikt

A

Micronstruction
TRANSPOSE

R/C CONTROL

C/R CONTROL

OFFSET REG QK

FFT SEQUENCER

DM REG QLK

AmM29540)

FPGA2020—40

16 x 16
MULTIPLIER

DT7217L25

~—— R/C MUX SELECT

IDT2381L.20

Figure 25. 2-D Counters

85

IMMEDIATE DATA

FILE Hm Z-DGI.INTER z—omrm 2—0
RCOD RCQD RCQD RCOD

10 010 19 15 1o K 1202 17 1303 18
oS 12 by 14 CROSSBAR s
e A WITH REGISTER FILE * e
RAN 014 013 09 08 07 RAM R

lREGlSTER I | REGISTER l | REGISTER I

! ! |

ADDRESS ADDRESS ADDRESS
PORT ASC PORT B&D PORT E &
TO MICRO- BANK ADDR
PROGRAM
SEQUENCER

ADDRESS GENERATOR

Pigure 26. AGC Block Diagram

86

3.2.3.1 CPH Address Gensrator Board Download

Recall that the address generator board houses the central control store
of the EVA. To download EVA microprograms from the 1/0 Processor (IOP) to the
Address Generator Board (AG) the code running on the CPH system must request a
program download by pulling the Download Request (DLRQST) line low on the
high-speed 1/0 bus (HSIOB). This not only requests the IOP to download the
program, it also causes the microsequencer to push the program counter onto
the stack and to halt. The status of all counters, RAM (other than program
RAM), and other circuits are preserved at that moment. The IOP then downloads
the program to the program RAM as follows:

The IOP places the Program RAM address onto the HSIOB I/0 address lines.
Each board in the system decodes the address and the targeted board latches
the address.

3.2.4 1/0 Processor Purposs and Featurss

The IOP Processor (IOP) serves as the communication link between the CPH
system via the High-Speed I/0 (HSIO) bus, an IBM-PC via the 1/0 (PCIO) port,
and the VME VPE processor via the Serial I/0 (SIO) port. The SIO port
communicates directly to a buffer/communications board residing in & VME
chassis, so optionally this port can serve as the host rather than an IBM-PC
if desired.

The microcontroller on-board the IOP is entirely interrupt driven. In
response to an interrupt received from one of the I1/0 interfaces, it executes
the interrupt service routine pointed to by its internal interrupt vector
table. In the case of an interrupt from the host, this routine simply reads a
command from the interface and executes it. This will generally be a command
to transfer a block of data from/to the host. This is dome by initializing
one of two data transfer counters, initializing the appropriate interface
control registers, and then setting the GO control bit on the "sending"
interface’s control register. The control logic for each interface handles
the necessary handshaking to complete the data transfer, including monitoring
flage and generating read and write signals, all independent of
microcontroller intervention. Upon completion of the transfer, the "sending”
interface generates an interrupt, and the microcontroller performs the
necessary resource allocation cleanup.

3.2.4.1 1I0P Control Signals

Addressing the control registers is accomplished by setting the
microcode control address field to the address indicated below in each
register description. Bits in the microcode data field may be either data
write enable bite or data bits, as defined in each control register
description. In order to modify a bit in a control register, the comtrol bit
associated with the data bit must be set LOW, the data bit(s) must be set to
the desired value, and the correct address must be present. When all this
occurs slong with the Control Register Write (CRW) microcode bit set low, the
change will occur.

87

RESOURCE ALLOCATION ADDRESS 0
PAL FILES: CTRL8.PDS
PAL DEVICE: PALCE26V12

This register indicates what resources are currently in use and which
are available. These bits are undefined at power-up or after a reset and must
therefore be initislized prior to operation. The resources are:

MICROCODE BITS
control data

19 7 Counter A

18 6 Counter B

17 5 High-Speed I/0 Interface Receive
16 4 High-Speed 1/0 Interface Send

15 3 Serial I/0 Interface Receive

14 2 Serial 1/0 Interface Send

13 1 IBM-PC Interface Receive

12 0 IBM~-PC Interface Send

Each software routine which uses a resource first checks its
availability. Once the routine has determined that the resource is available
by detecting a HIGH in the appropriate bit, it sets that bit LOW to indicate
that it is in use. All interrupts must be disabled during this portion of the
code. The bits are read using the microsequencer flag (condition) input.

IBM-PC INTERFACE CONTROL ADDRESS 1
PAL FILES:
PAL DEVICE:

This register contains all IBM-PC receiver interface controls, controls
which are common to both the IBM-PC transmit and receiver interfaces, and
controls that are initialized during reset and normally remain unchanged
afterwards. Upon reset all outputs are set HIGH.

MICROCODE BITS
control data

17 8 RECEIVE - Allows sending interface to
send.
16 7 SOURCE - Selects the source interface

when receiving data - LOW
is SI10, HIGH is HSIO

15 6 CLRINT - Interrupts cleared when LOW
14 5 ENINT - Interrupts enabled when HIGH
13 4 ODD/EVEN - Parity ODD when LOW
13 2:2,1 CLK 2,CLK 1,CLK O
CLK2 CLK1 CLKO
0 0 1] 500 KHz
0 0 1 1 MHz
0 1 0 2 MAz
0 1 1 4 MHZ
1 0 1] 8 MHz
1 0 1 16 MHz
1 1 0 16 MHz
1 1 1 500 KHz

12 0 RESET - Reset the IBM-PC interface
when LOW
IBM-PC INTERFACE TRANSMIT CONTROL ADDRESS 2
PAL FILES:

PAL DEVICE:

This register controls the operation of the IBM-PC transmit interface.
Upon power-up reset or IBM-PC interface reset all bits are set HIGH.

MICROCODE BITS
control data

18 7 PMRSTAT1 - STAT1 receive interrupt
mask

17 6 PMRSTATO - STATO receive interrupt
mask

16 5 GO - Enables sending data when LOW

15 4 PSELAB - Selects which counter is

assigned to the IBM-PC interface for
sending data - LOW is counter A,
HIGH is counter B
14 3,2 REAL, IMAG
REAL IMAG
0 0 64-bit, low word first
0 1 32-btit, imaginary data
1 0 32-bit, real data
1 1 64-bit, high word first

13 1 XSTAT]1 - Transmit status bit 1
12 0 XSTATO - Transmit status bit O
IBM-PC INTERFACE INTERRUPT MASK ADDRESS 3
PAL FILES:
PAL DEVICE:

The interrupt is masked when the bit is set HIGH and enabled when set
LOW. Upon power-up reset or IBM-PC interface reset all bits are set HIGH.

MICROCODE BITS
control data

13 9 PREF Receive Empty Flag
13 8 PRAEF Receive Almost Empty Flag
13 7 PRHF Receive Half Full Flag
13 6 PRAFF Receive Almost Full Flag
13 5 PRFF Receive Full Flag
12 4 PXEF Transmit Empty Flag
12 3 PXAEF Transmit Almost Empty Flag
12 2 PXHF Transmit Half Full Flag
12 1 PXAFF Transmit Almost Full Flag
12 0 PXFF Tranemit Full Flag
SERIAL ZI/0O INTERFACE CONTROL ADDRESS 4
PAL FILES:
PAL DEVICE:
89

This register contains all Serial I1/0 receiver interface controls,
controls which are common to both the Serial I/0 transmit and receiver
interfaces, and controls that are initialized during reset and normally remain
unchanged afterwards. Upon power-up reset all outputs are set HIGH.

MICROCODE BITS
control data
17 7 LOOPEN - Receive and transmit
loopback outputs enabled when HIGH,
Serial outputs when LOW
16 6 SOURCE - Selects the source
interface when receiving data - LOW
is 1BM-PC, HIGH is HSIO

15 5 CLRINT - Interrupts cleared when LOW
14 4 ENINT - Interrupts enabled when LOW
13 32,1 XSEL2, XSEL1, XSELO
XSEL2 XSEL1 XSELO
0 0 0 HIGH
0 0 1 Receive FF
0 1 0 Receive AFF
0 1 1 Receive HFF
1 0 0 Receive AEF
1 0 1 Receive EF
1 1 0 XSTATO
1 1 1 LOW
12 0 RESET - Reset the interface when LOW
SERIAL I/0 INTERFACE TRANSMIT CONTROL ADDRESS 5

PAL FILES:
PAL LEVICE:

This register controls the operation of the Serial I/O interface. Upon
power-up reset or Serial I1/0O interface reset all bits are set to HIGH.

MICROCODE BITS
control data

17 6 SXRESET -~ Reset the transmit
interface

16 5 GO - Begins sending data when LOW

15 4 Selects which counter is assigned to

the SIO interface for sending data -
LOW is counter A, HIGH is counter B
14 3,2 REAL, IMAG
REAL IMAG
0 0 64-bit, low word first
0 1 32-bit, imaginary data
1 0 32-bit, real data
1 1 64-bit, high word first
13 1 XSTAT]1 - Transmit status bit 1
12 0 XSTATQO - Transmit status bit O

90

.

SERIAL I/0 INTERFACE TRANSMIT INTERRUPT MASK ADDRESS 6
PAL FILES:
PAL DEVICE:

The interrupt is masked when the bit is set HIGH and enabled when set
LOW. Upon power-up reset or Serial 1/0 interface reset all bits are set HIGH.

MICROCODE BITS
control data

13 9 PREF Receive Empty Flag
13 8 PRAEF Receive Almost Empty Flag
13 7 PRHF Receive Half Full Flag
13 6 PRAFF Receive Almost Full Flag
13 5 PRFF Receive Full Flag
12 4 PXEF Transmit Empty Flag
12 3 PXAEF Transmit Almost Empty Flag
12 2 PXHF Transmit Half Full Flag
12 1 PXAFF Transmit Almost Full Flag
12 0 PXFF Transmit Full Flag

HIGH-SPEED 1/0 INTERFACE CONTROL ADDRESS 7

PAL FILES:

PAL DEVICE:

This register controls the operation of the High-Speed I/0 (HSIO)
interface. After reset all bits are set to HIGH.

MICROCODE BITS
control data

17 7 MEM - I/0 HIGH, Memory LOW
16 6 WRITE - Read HIGH, Write LOW
15 4,5 SOURCE - Selects the source
interface when receiving data
BIT5 BIT4

0 0 Microprogram ROM
0 1 IBM-PC Interface
1 0 Serial I1/0 Interface
1 1 None
14 3 GO - Begins sending data when LOW
13 2 HSELAB - Selects which counter is
assigned to the HSIO interface for
sending data. LOW is counter A, HIGH
is counter B

12 1 REAL
12 0 IMAG
REAL IMAG
0 0 64-bit, low word first
0 1 32-bit, imaginary data
1 0 32-bit, real data
1 1 64-bit, high word first
DATA TRANSFER COUNTER A ADDRESS 8
bits 19:0 Data transfer count to load

91

DATA TRANSFER COUNTER B ADDRESS 9
bits 19:0 Data transfer count to load

MACRO RAM ADDRESS REGISTER ADDRESS 10
bits 12:0 Directly addresses MACRO RAM

MACRO RAM ADDRESS COUNTER ADDRESS 11
bits 11:0 Parallel loads counter which directly
addresses MACRO RAM

MACRO RAM COUNTER REGISTER ADDRESS 12
bits 11:0 May be used to load MACRO RAM ADDRESS

COUNTER at a later time

CPH 1/0 ADDRESS COUNTER ADDRESS 13
bits 23:0 Addresses CPH 1/0 and memory space

CPH 1/0 SYSTEM ADDRESS REGISTER ADDRESS 14
bits 5:0 Used to generate system address when
downloading microcode into CPH system(s)

I0P CONTROL REGISTER 0 ADDRESS 15

PAL FILES:
PAL DEVICE:

MICROCODE BITS

control data

12 2,1,0 Interrupt Mapping Select
BIT2 BIT1 BITO

Interrupt table
Interrupt table
Interrupt table
Interrupt table
Interrupt table
Interrupt table
Interrupt table
Interrupt table

-~ 0 000
=~ 00~ H~HOO
OO OMF~O
NoOAUMAsE WD~ O

3.2.4.2 1IO0P Theory of Operation
SYSTEM INTERRUPT

A system interrupt indicates that one or more boards in a system
requires servicing. The first step is to determine which system generated the
interrupt.

The interrupt service routine must poll each board’s configuration
register bit 0 at the board’s base 1/0 address + 1 to determine if that board
caused the interrupt. 1f this bit reads O then that board 1s generating a
system interrupt. At this point the action to take place is entirely under
software control. The only requirement in hardware is that bit 0 of base I/O
address + 1 on that board be written to with a 1 to clear the system
interrupt.

92

o ", BV R

P

1 e nom— [™ a———

IOP RESET

Upon IOP reset or power-up, if the BOOT RAM/ROM jumper is in the RAM
position. a state machine presents a WCS 0000 instruction to the ADSP-1401
microsequencer. This places the microsequencer in the write control store
mode and begins outputting addresses starting at 0000H counting upwards. Code
is then loaded from the host (selected by a jumper) into the microsequencer
microcode RAM. The entire RAM space of 0000 to OFFF must be loaded with code
or filled with IDLE instructions. Optionally ROM may be installed in place of
RAM and the BOOT jumper set to ROM instead of RAM. In this case the above
load is skipped.

For RAM BOOT jumper the address continues to increment now at 100OH.
For the ROM BOOT jumper the microsequencer address is initialized using the
WCS instruction to 1000H. At this point the microsequencer is no longer
loading its own microprogram memory, but is loading the IOP macroinmstruction
memory. IOP macroinstruction memory must again be completely filled with code
or filler. This continues until the microsequencer hits address 2000H where a
microsequencer reset is generated by the hardware beginning execution of the
code at wmicrosequencer location 0000H. The code beginning at 0000H
initializes the microsequencer and then jumps to the IOP macroinmstruction at
its program counter address OOOR and continues from there.

The microsequencer reset is generated by the combination of the BOOT
state machine in the BOOT state and the mi-rosequencer address bit 13 high.
When this occurs, both the microsequencer is reset and the BOOT state machine
ie placed in the RUN mode.

3.2.4.3 1I0P Microssquancer

The IOP board has an extensive and independent microcontroller to manage
the several datapaths among the various EVA functional units. The
microsequencer is depicted in Figure 27 where it is shown that the PC (ISA),
HSIO, and SIO (VME Buffer) are controlled by a 48-bit microinstruction as
tabulated here.

Microinstruction Format

BITS USAGE

7 microinstruction opcode

6 conditional select

11 literal data

16 data or relative jump address

A WCS is used for downloading IOP command sequences from the host
computer. The All counter (CNTR) may be used for loops. AlO0 and Al2 are
additional address select registers for the sequencer where each may be
assigned to the three external datapaths (PC,HSIO,SIO) for controlling the
next sequence. The Analog Devices ADSP-1401 microsequencer chip has been
selected because it supports interrupts, nested loops, and & stack. Booting
up the 1401 requires us to put address 20H onto the sequencer program counter.
This will always be the starting address for RESET as well.

93

80

JIONINVISOYIIW d0I

S33

XNAW

3a0nW Wd 9y
SO3Y A1) dn Lood — 00 m_
e [_
aNY ,
b
SYIND Ol X [-
91
9 08IV .l
8
dWNr 3AILYTI3Y - X | Wl | 5 —
e SH [N piv o M
10ALNDOD 1T x |7 1% L
93s aNgd 9 b2 4
MISNI ONJIW Z 21V M g ._
_ I
s
“ oIS DISH 3d 8%
av wn\‘\ o1

IOP Microsequencer

rigut. 27.

94

——— b S

O

N WA TN s e

The IOP can detect the arithmetic status of the CPH ALUs. With this
input via the condition code select MUX, the IOP can jump to error handling
routines as needed. Both a fleag PAL and a MAP PAL support future
modifications to the IOP when device upgrades and subsequent address MAP
changes are needed. The previous IOP sections have described the control
register functions and the control signals which activate the datapaths
through this IOP board. Once the IOP has served as the traffic director of
the EVA, execution of code begins automatically and continues until the IOP
detects a flag set on any of the EVA boards. A set flag denotes some action
required of the IOP, such as "more data, computation done, or error
condition".

OPERATION - BOOT

On power-up the microsequencer on the IOP board contains no
instructions. The BOOT state machine controls the board at this point,
enabling a path from the host interface (either the PC or SIO interface,
whichever is programmed into the PAL) to the ADSP-1401 microsequencer’s
microprogram RAM. It also performs handshaking with the microsequencer’s FLAG
input and the host interface’s FIFORD PAL to control the timing between the
two, and loads the WCS O000B instruction into the microsequencer. The
microprogram RAM is 8k 48-bit words long, and the BOOT state machine will load
the first 8k 64-bit words of data appearing at the host interface into the
RAM, discarding the upper 16-bits of each word. At this point, the BOOT state
machine resets the microsequencer causing it to start executing code at
address 000H. This boot code is required to start with a CONT instructionm.
The remaining boot code will load the MACRO RAM. The MACRO RAM performs the
high-level instruction execution. It may be thought of as a sequence of
subroutine calls to the microsequencer. The MACRO RAM is 8k 16-bits words
long although only the bottom half will be used for MACRO instructions. The
top 4k words will be used to store configuration data, etc. The boot code
will expect the first instruction to appear at the host interface to be a
LDMACRO which will contain a starting address, and the number of 16-bit data
to be loaded. The upper 48-bits of each 64-bit data word from the interface
will be discarded. To expedite initial CPH tests, since the configuration of
the system will be known, the configuration data which would normally be read
from each of the boards upon reset may be loaded from the host and programmed
directly into the upper MACRO RAM. At this point all downloading has been
completed, and normal operation is to begin. All interaction between the
interfaces and the microsequencer are done under interrupt control. The
microsequencer boot code initializes the interrupt table as follows:

IRQ8 IBM-PC Receive NEF (HOST)
IRQ7 SYSTEM INT O {CPRH)
IRQ6 SIO Receive NEF (VPH)
IRQ5 IBM-PC STATI1 (BOST)
IRQ4 SIO STATI1

IRQ3

IRQ2 COUNTER A ZERO
IRQl COUNTER B ZERO

The boot code also reconfigures the interfaces if desired, such as

increasing the clock rate from the initial low rate it defaults to on power-
up.

95

3.2.4.4 Processor-to-1/0 Processor Communication Protocol

The Processor-to-1/0 Processor communication protocol is as follows.
Three single-bit registers will exist for each bank of cache memory: BUSY,
INT, and LOCK. The BUSY register is used by the Processor to indicate to the
I/0 Processor (IOP) that it is currently accessing that memory bank, the INT
register will inform the IOP when the Processor is finished with that bank,
and the LOCK register will prevent the Processor from accessing that bank
until the IOP is finished. An example utilizing these registers is given from
the viewpoint of first the Processor, and then the IOP.

PROCESSOR: The Processor examines the INT and LOCK bit and if both are
inactive, sets the BUSY bit and begins processing that bank of memory. If the
INT bit or the LOCK bit were active, it has to wait until both are inactive
before setting the BUSY bit and processing the data. Once the Processor has
completed its processing, it sets the INT bit.

IOP: The IOP examines the BUSY bit and if inactive, sets the LOCK bit
active. It then reexamines the BUSY bit and if still inactive, it begins
transferring the data. At completion of the data transfer, the INT bit is
cleared. If when the IOP reexamines the BUSY bit, it is suddenly found to be
active, the LOCK bit is immediately set to inactive assuming that the
Processor has taken control of the memory bank during the time it took the IOP
to set the LOCK bit. The Processor always has priority. 1If upon the initial
examination the busy bit was active, the IOP must either use another memory
bank or wait until the BUSY one generates an INT and the data is transferred
out.

In addition, in order to prevent the IOP from having to read the LOCK
register, OR or AND one bit, and write th. LOCK register back, logic should be
incorporated into the memory boards to accomplish these tasks. One method
would be to have four register address bits to select which of sixteen bits
will be changed, and one register control bit to indicate if the bit should be
set or cleared.

The memory BUSY register and INT register must aleoc be added to the
High-Speed I/0 (HSIO) bus memory address space, probably by utilizing the
unused bank address 7.

3.2.5 VPR/CPR VMR Buffer

The VME buffer board is the primary linkage between the CPH and the VPH.
This, however, is not its only function. When operating apart from the VPH,
the CPH can use the VME buffer board to comnect to a 6U VME backplane. When
used with the VPH, the VME buffer board plugs into the VPH backplane directly.
This board also incorporates the augmented interface for the VPH so that
parallel 64-bit data transfers between it and the CPH can take place. The
board is completely fabricated but untested as yet. A schematic has been
created for the board and is titled Serial 10 board. As the board 1is
basically a gateway for the VPH and CPH, the majority of the circuits are
transceivers and PALs for controlling activity. The subsequent state machine
design is basic. The major feature of this board is the Gazelle hot rod GaAs
chips to maintain the 80 MHz throughput between the CPH and VPH.

96

3.2.5.1 Purpose

This VME buffer board floorplan shown in Figure 28 is designed to serve
as a high-speed interface between the VPH Processor Board (designed for the
VME bus) and the CPH’s I/0 Processor Board which connects to a proprietary
backplane. The goal of this board is to link the two systems in an efficient
manner to maximize data bandwidth and to minimize the amount of I/0O necessary
to control the data transfers. This board should accept data from both the
VME bus (data width 4 bytes at 10 MHz) as well as the proprietary 32-bit data
connector which connects directly to the VPH board. Since this extra 32-bit
data connector is synchronized to the VME data transfer bus, it also transfers
4 bytes at 10 MHz for a total data transfer rate of 8 bytes at 10 MHz or 80
MBytes/sec between the VPH and Serial I/0 Board. Actual performance 1is
estimated to be approximately 67 MBytes/sec assuming an immediate response
from the VPH to DTACK (Data Transfer Acknowledge). Faster rates may be
obtainable by fine-tuning the Serial I/0 Board's DTACK timing for both reads
and writes once the boards are integrated into a system and actual timing
measurements may be taken. Dipswitches have been designed in so that the
DTACK timing may be adjusted individually for both reads and writes from/to
the FIFOs in 10 nanosecond increments. Depending on the amount of the change,
the FIFORD and/or FIFOWR PALs may also need to be reprogrammed.

At the serial interface, Gazelle HOT ROD ICs have been used which can
transfer data serially at a rate of 500 Mbits/sec or 62.5 MBytes/sec. The
actual serial baud rate is 625 MHz due to the 4-to-5 bit encoding scheme used.
These bits are invisible due to their being inserted at the transmitter and
stripped at the receiver. Data to the HOT ROD ICs is presented 40-bits at a
time. 32 bits are data, 4 bits are parity, and 4 bits are control. These 40
bits are latched at a 12.5 MHz rate. Since only 32 of the bits are data, the
actual data transfer rate calculates out to be 50 MBytes/sec. If this rate
isn’t fast enough, Gazelle also makes 800 Mbit/sec and will soon make 1000
Mbit/sec ICs which should be interchangeable with the ICs now in the design,
as long as the PALs which control them are suitably fast. Faster Gazelle ICs
would also mean faster FIFOs must be used. Only one speed upgrade 1is
currently available from that which is already being used. 35 nsec FIFOs are
now being used whereas 25 nsec are the fastest available at this time, and are
significantly more expensive. Faster FIFOs may also bring the VME data
transfer rate up to its maximum of 80 Mbytes/sec (including the proprietary
32-bit data connector). The Gazelle ICs directly drive 50-ohm coax cable for
short distances. For longer distances, it is suggested that an amplifier be
used for single-ended operation or that fiber-optic cable be used.

3.2.5.2 VME Buffer Board Bus Limitations
The VME buffer board uses a subset of the VME standard bus because the
board functions only as a special augmented interface to the VPH. The board

transfers the upper 32 data bits so that a 64-bit parallel bus couples the VPH
and CPH. It has VME limitations now described.

97

BUPNLMNT

R3 R2 p—
SPACE TECH CORP. © 1991 po R7 Ao} R6 f_
SERIAL 1/0 BOARD = AQVI0d | 5 se s [] C13 =
D&’ P/N SI0S00 REV - S A4 D y Iz
HB W W e RS b (‘_
B66P u 5 % j{ o A
O O G J SIS
- > = ol !
SiB 1 F 8 =
D 74FCT833 &| D 74FCTB33 £ s g at! 1§ |S l@
= R
D 74FCT833 & 74FCT833 S | caa\ S
; m —
| . o o] T
§ 9995wr/ |[§ VHINI { & o5 & O OS F#lo
3 B it - ”! IS
‘ ‘ & i /rr
@8 999Svv. {18 VHINI ¢ i g I
| & 3 ! g
L TE 1 [s 3 s g c & m| T
z[B 9995Tvre g vBINI < 2 0 & F B Flx .
: C c ’ ! | |
- &[§ 99951vr L [§ vHINI o e
| | §297140414 q |§ V9140214 G |uss] B
3 @ § 999STvy. ¢ |§ 810934] - g .
2 SRR E Lﬁiawmd;ﬁ B He vOi-
R & Vi /4 = s 5 o
S |2 ve-ns < ¢ vg-ms (I8 L
C % V —.M c s —
5 €9810dv. (_— 2 8115 <»L 3@3 NOVISWA (| ¢
S £98104b/ = E98104¢/ (|[& MHLOXNW §126104v, (| v0S
S EEB1D4r. (|§ EEBLIAV/ S126194v /. §ISINIINA SV/G.
2) 1 OD p
] X o [Becoladvs B -
e} 0] o
ECQLBF’RA]'
Figure 28.

VI Buffer Board Floorplan

6" JPNLMNT

ECQBLPHA

T " Cwokes (wika 1 [< O»D O
.ﬁno_.nﬁz m_v Dm ‘ T _ — |
a | m m ~ ~ ~|
[— I I Fa
J8 —~ V16§ uig | BRI
g7z . : T) P o)
| ™ — — —~
O { o j uar LEB1 T ® @© ©
g n»hou 037 ot | 10772021 //_ ~ w) G
, GAS011 N
O ‘ W Us4 u13 us E~
D _ ush utg 0 5
J5 oS
J6 - @ - N
— L. S | S —— mwm O < P N =
wriar |((1otikezs J 10772021 g 10172021 4 = N M)
D Al .: O —
= m - &)
m a = X oo o
u2 u2 u2 u2 R [
i] ¥ cuw uaal = fue
4
U2 luss
- — - o N ~
‘ . N AV W_
>
= D COUNTS uss| b XMITS011 usol w | 5] IR &
| — = — = S (B (o
TXC025 _ no w o>
- —- —] -~ o !
D 74.5574us| D PEAROR we| ooimer | © | o |R| (Y
T U46
. ————— e S4 \ lo [Y
=0 P FIFORD use] D AECS012ws| b FIFOFLG2 B L — |=| |w - ﬂo
T - —aie= = ~ ce
o . m m
Qe e IO e ol o @
o lle o ” -— >
Dmm D FIFOWA uso| [y | e 1B |5 <] |~
- (&) “n
ﬂﬂ Js 5 u 8 - _rJ n = 5
ey u24g U25g -
L 5 § A Poler| (s = a
J10 1 8 z =
8% u3s ; 1oL = wn n
J11 - Lo AU | [T oogzzef AP3 =
ww nmu,bm 7 rottaoes 1_ 1017021 oD " Ue6 U39
o p= 5A9012 | = L
! 9 ; = | ! _C3

A

Data Transfer Bus

- BERR* is not supported since all addresses are occupied. The only
illegal board accesses are:

l. Attempt to write to the Interrupt Status Register
2. Attempt to read from the Interrupt Status ID Register

This board does not support D16:BLT nor DO8(EO):BLT Double- nor Single-byte
block transfers. When the board is configured without the extended 32-bits of
data FIFO, it accepts all Quad-byte, Double-byte, and Single-byte data reads
and writes. When configured with extended 32-bits of data FIFO, it supports
proprietary Octal-byte reads and writes, although it appears to the VME bus as
a Quad-byte transfer (D32:BLT). When the board is configured without the
extended 32-bits of data FIFO, it accepts Quad-byte Block Transfers. When
configured with extended 32-bits of data FIFO, it supports proprietary Octal-
byte block transfers, although it appears to the VME bus as a Quad-byte block
transfer.

This board does mnot support RMW (read-modify-write) simply because
reading and writing is done from a separate FIFOs. When the board is
configured without the extended 32-bits of data FIFO, it accepts Triple-byte
reads and writes. Its Priority Interrupt Bus has the signals, I(1), I(2),
I(3), I(4), I(5), I(6), I(7), and can generate an interrupt on any of the
seven interrupt request lines IRQl* through IRQ7*.

The VME signal, D08(0), drives D00-DO7 in response to a valid 8-bit, 16-
bit, or 32-bit interrupt Acknowledge cycle. Release On Acknowledge
interrupter type (ROAK) is an interrupt request to be released upon a status
ID register read.

3.2.5.3 Control Registers of the YME Buffer Board

The board contains control, interrupt status, interrupt mask, and

interrupt status-ID registers. Their addresses and bit definitions are as
follows:

CONTROL REGISTER

All bits are active high and are reset to zero on power-up or VME system
reset.

Bit Name Description
0 IRESET Reset Latched Interrupts
1 FRESET Reset FIFOs
2 ENINT Enable VME Interrupts (DEFAULT: Interrupts disabled).
3 INTSEL1 | Selects which VME Interrupt Request Line is
4 INTSEL2 | pulled low when an on-board interrupt is
5 INTSEL3 | generated (DEFAULT: 000, no interrupt selected).
6 DT Data Type O Standard 32-bit VME data (DEFAULT)
1 Extended to include 32-bit proprietary
7 SWINT Software Interrupt
8 RLOOPEN Enable Receiver L Input (DEFAULT: S Input)
99

9 XLOOPEN Enable Transmitter L Output (DEFAULT: S Output)

10 CXSTATO Control Transmit Status Bit O (DEFAULT: LOW)
NOTE: This signal is inverted prior to being

transmitted.

11 XSTAT1 Transmit Status Bit 1

12 XSELO | Transmitter Control Bit O Source Address

13 XSEL1 | (DEFAULT: 000)

14 XSEL2 | (see table below)

15

TRANSMITTER CONTROL BIT O SOURCE ADDRESS

Address Control Bit 0 Transmitted
0 LOW Always LOW (DEFAULT)
1 RFF Receiver Full Flag
2 RAFF Receiver Almost-Full Flag
3 RHFF Receiver Half-Full Flag
4 RAEF Receiver Almost-Empty Flag
5 REF Receiver Empty Flag
6 CXSTATO Control Transmit Bit O
7 HIGH Always HIGH

INTERRUPT STATUS REGISTER

Bit Name Description
0 XFF Transmitter FIFO Full Flag
1 XAFF Transmitter FIFO Almost-Full Flag
2 XHFF Transmitter Half-Full Flag
3 XAEF Transmitter Almost-Empty Flag
4 XEF Transmitter Empty Flag
5 RFF Receiver FIFO Full Flag
6 RAFF Receiver FIFO Almost-Full Flag
7 RHFF Receiver Half-Full Flag
8 RAEF Receiver Almost-Empty Flag
9 REF Receiver Empty Flag
10 PARITY Parity Error
11 RSTATO Receiver Status Bit 0
12 RSTATI1 Receiver Status Bit 1
13 RECERR Receiver Data Error
14 SWINT Software Interrupt
15

100

INTERRUPT MASK REGISTER

All bits are active high and are reset to one on power-up or VME system
reset (all interrupts are initially masked).

Bit Name

0 XFF

1 XAFF

2 XHFF

3 XAEF

4 XEF

5 RFP

6 RAFF

7 RHFF

8 RAEF

9 REF

10 PARITY
11 RSTATO
12 RSTAT1
13 RECERR
14 SWINT

15

Description

Transmitter FIFO Full Flag Mask
Transmitter FIFO Almost-Full Flag Mask
Transmitter Half-Full Flag Mask
Transmitter Almost-Empty Flag Mask
Transmitter Empty Flag Mask
Receiver FIFO Full Flag Mask
Receiver FIFO Almost-Full Flag Mask
Receiver Half-Full Flag Mask
Receiver Aimost-Empty Flag Mask
Receiver Empty Flag Mask

Parity Error Mask

Receiver Status Bit 0 Mask

Receiver Status Bit 1 Mask

Receiver Data Error Mask

Software Interrupt Mask

INTERRUPT STATUS ID

This is simply an 8-bit register which is written to by a VME bus
master. During an interrupt Acknowledge cycle, the contents of this register
is placed onto the VME data transfer bus in response to a wvalid IACKIN

address.

Register

CONTROL REGISTER
INTERRUPT STATUS
INTERRUPT MASK
INTERRUPT STATUS ID

REGISTER ADDRESSES

Read/Write Address Offset
R/W 100h
R 104h
R/W 108h
w 10Ch

3.2.,5.4 Address Select on the VME Buffer Board

Three 8-position dipswitches reside on the board for selecting both the
FIFO address as well as the register address block. These two blocks must be
contiguous with the FIFO block residing in the lowest 256-byte block and the
registers in the upper. Neither the addressing for the FIFOs nor for the
registers is fully decoded, leading to address foldover. The FIF0O's respond
to any address within their 256-byte block, and the registers each respond to
sixteen different locations (they ignore the upper 4 address bits of the

lowest byte).
The three dipswitches

S1

are:

address bits A3]l - A24

101

S2 address bits A23 - Alé6
S3 address bits AlS - AO09

For each dipswitch OPEN represents a HIGH, CLOSED represents a LOW.
Position 1 represents the most significant bit of that address byte, with
position 8 representing the least.

3.2.5.5 VME Buffer Board Interrupts

The board may generate an interrupt to any of the following conditions:

0 XFF Transmitter FIFO Full Flag

1 XAFF Transmitter FIFO Almost-Full Flag
2 XHFF Transmitter Half-Full Flag

3 XAEF Transmitter Almost-Empty Flag
4 XEF Transmitter Empty Flag

5 RFF Receiver FIFO Full Flag

6 RAFF Receiver FIFO Almost-Full Flag
7 RHFF Receiver Half-Full Flag

8 RAEF Receiver Almost-Empty Flag

9 REF Receiver Empty Flag

10 PARITY Parity Error

11 RSTATO Receiver Status Bit 0

12 RSTAT1 Receiver Status Bit 1

13 RECERR Receiver Data Error

14 SWINT Software Interrupt

15

All of the above signals are active low. When active, a rising edge on
the 25 MHz clock latches them into their respective INTR4 PALs (U62-U6S),
causing the INTR4 PAL to output a low on its INT output. The VMEINTSL PAL
(U66), upon detecting one or more of its INTx inputs low, generates a high on
the IRQy output that is addressed by the SELy inputs, and also a low on its
INT output. The SELy inputs are programmable in the CONTROL REGISTER (U34)
and select which VME interrupt request line is being used by the board. The
CONTROL REGISTER ENINT (Enable Interrupt) bit must be set to one to enable the
VME interrupt request open-collector drivers (U39).

RESPONDING TO INTERRUPT ACKNOWLEDGE DAISY-CHAIN INPUT

Upon detecting a low signal on its IACKIN input, the VMEIACK PAL (U67)
sees if three conditions are met prior to responding. First, its INT input
must be low indicating an on-board interrupt is pending. Secondly, the ENINT
input must be high indicating that interrupts are enabled. And thirdly, the
address received on the AOl, A02, and A03 inputs must match those on the SELO,
SEL1, and SEL2 inputs (and must not be 0). If all of these conditions are
met, then the IDEN output is set to active low, else the IACKOUT output is set
to active low passing along the interrupt acknowledge to the next board in the
system. If IDEN is set low, this signal is passed to the Status ID register
(U36) OERB (output enable read-back) control input causing the register to
output its contents onto the data bus. IDEN alsc connects to the MUXCTRL PAL
(US1) enabling the VME bus transceivers (U4-Ull).

102

aliR u m i ‘

3.2.6 PC Interface Board

The primary code development interface to EVA is via a PC interface
board (PC-INT) shown in Pigure 29. Space Tech’s high-speed PC interface is
designed for versatile interfacing to wvirtually any type of PC outboard
hardware. The interface is symmetric; that is, the two "ends" of the
interface circuitry are identical with the exception of glue logic tying the
interface to the local environment. This interface i1is a bidirectional
interface. Interconnect i1s done via twisted pair cable. RS-422
drivers/receivers are used to ensure noise immuniiy and allow high throughput;
well-written drivers should allow this interface to handle data transfers at
the full ISA bus data rate. An architectural/functional description of the
interface as it appears to the PC/AT system follows.

The interface is accessed in the PC’'s 1/O Address Space (as opposed to
its Memory Address Space), and it occupies a &4-byte section of this space.
The base address at which the interface resides is selectable via an 8-pole
dipswitch on the interface board. It would be desirable that driver software
can be configured to look for the interface at any address within the I/0O
Space dedicated to slave add-ons (the first 256 locations are dedicated to the
platform itself, the next 768 locations are available for slave cards).

The interface is a 16-bit resource whose base address must be a multiple
of 4. The least significant address bit will always be 0, since the board is
a 16-bit device. Two addresses - the base address and the base address plus
two - access different resources on the interface. These resources are:

Read FIFO

Write FIFO

Control Register

Status Register
Interrupt Mask Register
Interrupt Register

The Read and Write FIFOs are where input and output data, respectively,
are queued up as they pass to and from the board. The FIFOs share an address;
the cycle type (READ or WRITE) determines which FIFO is accessed. The Control
reglster is a write-only location. Bits within this register determine the
rate at which data is clocked across the interconnect, enable/disable of the
FIFOs, enable/disable and set the sense of parity checking, enable/disable and
clearing of interrupts, select whether an access to the FIFO/Interrupt Mask
Register location is destined for the FIFOs or the Interrupt Registers, and
setting the interrupt level passed on to the PC in response to a valid
interrupt condition. Two additional bits are multipurpose, undedicated
interface lines which travel directly across the interface without passing
through the Write FIFO. (These two bits appear as two bits in the Status
Register at the opposite end of the interface.)

The Status Register is a read-only location (address coincident with the
Control Register) which provides access to status flags for the FIFOs. Both
Read and Write FIFO flags may be observed via the Status Register. These
flags are Full, Almost Full, Almost Empty, .nd Empty. Another bit indicates
that a parity error has been detected. Two additional bits are a direct
reflection of the two multipurpose bits from the Control Register at the
opposite end.

103

PC Interfacs Board Layout

Pigure 29.

104

T

The Interrupt Mask Register 1is a read/write location which provides a
means of selectively generating a PC interrupt based on the conditions of the
FIFO flags, the Parity bit in the Statuc Register, or the assertion of either
of the multipurpose bits from the Status Register. A READ of the Interrupt
Register provides a "snapshot” of the current interrupt conditions which have
occurred since the last clearing of the Interrupt Register. (This provides a
means of determining what type of service 1s required when more than a single
condition may cause an inte-rupt.) The location of the Interrupt Mask
Register and the Interrupt Register is coincident with the Read and Write
FIFOs; a bit in the Control Register determines whether an access to this
location is destined for the FIFOs or the Interrupt Registers.

A description of each of the registers and the bits they contain
follows.

CONTROL REGISTER

X|X|I|1|Cc|E|S|O|C|C|C|R|R]|S|S]|S
| |R|R|L|N|E|D|L|L|L|E|E|E|T|T
Q|Q|R|I|T|D|K|K|K|S|C|N|A|A|
|Z|N|M[*] | | |E|E|D|T|T|
1)2|N|T]A|/]2|1l0|T|T
ITH |S|E] | [| {v] |1]0
[*] IRV || | |E
[1 Ej | ||| i
I I T I
ISRARYRENERT P !
5|4[3]2|1]0|9|8]|7|6|5]|4|3|2]1]0]|

Bite 15 and 14 are not used, soc are don’t cares when writing the
register.

Bits 13 and 12 determine which PC interrupt is asserted when a valid
interrupt condition exists and interrupts are enabled. For:

Bit 13 Bit 12 Interrupt selected

- - - - - - -~

0 0 IRQ10
0 1 IRQL1
1 0 IRQ12
1 1 IRQLS

Bit 11, when asserted, clears all interrupt flags. Als. w.ile this bit
is asserted all interrupts are disabled, so to clear in.. _upts but not
disable them, this register must be written to twice - first with Bit 11 = O
then with Bit 11 =],

Bit 10, when asserted, enables generation of interrupts. This is the
intended method of enabling/disabling interrupts! If Bit 10 is negated,
interrupts will not be generated, but the Interrupt Register will still be
updated as valid interrupt conditions occur. If Bit 11 is asserted, interrupt

105

flags will NOT be updated and a valid interrupt condition will then be lost.

Bit 9 determines whether an access to the FIFO/Interrupt Mask Register
address will be directed to the FIFOs or the Interrupt Registers. When the
bit is asserted (=1), an access is directed to the Interrupt Registers.

Bit 8 determines the sense of parity semse. Bit 8 = 0 selects odd
parity, and 1 selects even parity.

Bits 7, 6, and 5 select the clock rate used to clock data across the
interface. The value of these bits determines the division applied to the
local clock which runs at 16 MHz. The values and corresponding division
factors are:

CLK2| CLK1 | CLKO|Divisor

- - - = - - - - -

o] o| o 32
0] o 1] 16
o| 1] o 8
o] 1| 1| 4
1] X] o] 2
1] X| 1] 1

Bit 4 is the interface reset bit. A 1 written to this bit causes all
FIFOs to be cleared and zeroces to be written to all bits of all registers.
(This causes the bit to self clear.)

Bit 3 is the enable bit for the receive (READ) FIFO. A O written to
this bit prevents the READ FIFO from receiving any new data across the
interface, but does not prevent data already in the FIFO from being read by
the PC.

Bit 2 1s the enable bit for the send (WRITE) FIFO. A 0 written to this
bit prevents the WRITE FIFO from sending data out across the interface, but
does not prevent the PC from writing new data to the FIFO.

Bits 1 and 0 are the multipurpose interface bits. These bits propagate
directly across the interface and appear as bits 1 and 0 in the Status
Register at the other end of the interface. They may be used as interrupt
lines, or for whatever kind of semaphores may be called for. These bits DO
KOT pass through the FIFOs at either end.

106

ey

STATUS REGISTER

Bits 11
Status Register.

w|W|P|S|S
F|F|A[T|T
FIE|R|A|A
*

- 15 are not used and should be disregarded when reading the

Bit 10 is the Read FIFO Almost Full flag. A O in this bit indicates
that the READ FIFO is almost full.

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit
error has

9 - Read FIFO Almost Empty flag.

8 - Read FIFO Full flag.

7 - Read FIFO Empty Flag.

6 - Write FIFO Almost Full flag.

5 -~ Write FIFO Almost Empty flag.

4 - Write FIFO Full flag.

3 - Write FIFO Empty flag.

2 is the parity error flag. A O in this bit indicates that a parity
occurred.

Bits 1 and 0 are a direct reflection of the STAT1 and 0 bits from the
Control Register at the opposite end.

INTERRUPT MASK REGISTER

The template for the Interrupt Mask Register is identical to the Status
Al in any bit position of the Interrupt Mask Register allows the
corresponding bit in the Status Register to generate an interrupt; a O masks

Register.

it out.

107

The addresses at which the various interface resources are located are
shown below.

Base Address (SETMASK = 0) - READ or WRITE FIFO

Base Address (SETMASK = 1) - Interrupt Mask Register (Write)
or Interrupt Register (Read)

Base Address + 2 - Control Register (Write) or Status
Register (Read)

A better understanding of the register function can be obtained by
reviewing the following pseudo-code for testing 2 PC interface boards. A
simple program is suggested.

PROGRAM 1: Write 16-bit data out to one PC-INT board and receive it via
another PC-INT board.

To test this program, install two PC-INT boards into the PC and connect
the two board connectors together so that the output of one board is the input
to the other. The procedure is to send the main memory data out one board and
into the other. Set the sending board’s base address to 340. Set the
recelving board’s base address to 360. Configure these addresses with the
dipswitches on each board. Although the FIFOs are 2k words deep, only 256
words are being transferred. No check for parity errors are done. NOTE!
Locations 342 and 362 are control registers when writing to them and the
status register when reading from them.. Locations 340 and 360 are data
registers when bit 9 in 340 and 360 are cleared. So data is then transferable
via locations 340 and 360. However, when bit 9 is set to 1 in 342 and 362,
then 340 and 360 are interrupt mask registers when writing to them and
interrupt registers when reading from them.

The program is described in single step manner only to help you
understand the procedures. An actual program would combine several of the
steps into a single "load" assembly language instruction.

l. CLEAR and INIT ONBOARD REGISTERS (in 342 and 362)

set cr 4 to 1 in 342 and 362 /reset bit in the control
registers, clears registers and
F1FOs/

set cr 7,6,5 to 001 in 342 and 362 /500kps baud rate in both boards/

2. INIT CONTROL REGISTER base addresses 342 and 362 to talk next time to the
interrupt mask register

set bit 9 to one in 342 and 362
/allows 340 and 360 to write to interrupt
mask reg instead of data registers/

3. INITIALIZE INTERRUPT MASK REGISTER

Load mask bits into 340 (note that 340 now writes to mask register
instead of data register because bit 9 in the control register was just set to

108

one. (Later, we’ll clear this bit in the control register in order to write
to the data register.)

set bit 6 to one in 340
/the write FIFO will interrupt the PC
when it is almost full/

4. EHNABLE IRTERRUPTS

set bits 13,12,11,10 in 342 and clear bit 9 in 342 so 340 is a "data" register
now

Juse IRQ 15 to interrupt PC when

write FIFO is almost full in 342

(hence, stop transmitting)/

set bits 13,12,11,10 to 101l in 362 and clear bit 9 in 362 so 360 is a data
reglster

Juse IRQ 12 to interrupt PC when

read FIFO is almost full in 360/

5. WRITE DATA TO 340 (DATA PORT)(If FIFO is empty or almost empty, write a
block <2kwords)

Move 16-bit words from main memory and write each word into address 340.
Don’t write more than 2k words, otherwise the FIFO will overflow in the board.

set bit 2 of 342 to 1 and bit 3 to O
/location 340 becomes a
transmitting board/

set bit 3 of 362 to 1 and bit 2 to 0
/location 360 becomes a
receiving board/

set bit 9 of 362 to 1
/to be able to set interrupt mask
into 360 instead of sending
erroneous data out 360/

set bit 10 of 360 to 1
/enables the read FIFO almost
full interrupt flag/

clear bit 9 of 342
/1340 is now a data port again/

write 256 16-bit words to 340
read bit 4 in 342 and don't write til set (FIFO is not full if flag is set)

if set write next word and check bit 4 (ok to send a word)

109

6. READ DATA FROM 360

clear bit 9 of 362 /now 360 is a data port/
read 256 16-bit words from 360

read bit 7 of 342 before each read and if cleared then read the word
reaad bit 7 of 362 after each read. If set stop reading and wait til cleared.

7. IF IRTERRUPTS OCCUR

If IRQ 15 occurs from the transmitting board (board sending data out of
the PC), then pause writing to 340 to allow 340 to open space in its FIFO by
dumping out to 360.

If IRQ 12 occurs from the receiving board (board sending data back into
the PC), then stop writing to 340 because 360 is almost full and can’t store
any more data from the transmitting board.

3.2.6.1 VPH-End PC Interface

The PC interface at the VPH end differs slightly from the PC end
interface. The architecture is essentially the same, but the interface
resources are accessed a little differently than at the PC end. The resources
at the VPH end are accessed at the following 68020 addresses:

Interface Base Address -~ $24 0000
Read/Write FIFOs - $24 0000
Status{Control Registers - $24 0004
Interrupt Registers - $24 0008

Accesses to all of these resources are longword (32-bit) accesses,
although only the lowest 16 bits are utilized.

The Status, Interrupt, and Interrupt Mask Registers are identical to
those at the PC end. The Control Register is slightly different due to the

difference in local environments. The mapping of the Control Register is shown
below.

Control Register - VPH end

N Mmoo, e
- N w;n
S rmmr
o ed e DT
X o=
O~ 4N XX
< m~- v DO
x
x r
x r
-4 ™ N M D
M e~ MO MDD
S E MW
- P =N
- B -4 N

CMIT e O — N
—
f—d

-
=
=
-
-
-
~0
[
~4
o
(3]
o
A
~N
-
(=

110

weee @k G

S —

«

wmamy,

STAT 0 & 1 - These are general purpose interface bits. A bit written to
STAT O or 1 in the Control Register appears as STAT 0 or 1 in the Status
Register at the other end of the interface.

SEND - This bit is an enable for the sending of data across the
interface. A O written to this bit does not disable the ability to write to
the output FIFO, but does prevent data in the output FIFO from being sent
until a 1 is written to this bit.

RECEIVE - This bit is an enable for the receiving of data across the
interface. A O written to this bit does not disable the ability to read data
in the FIFO, but does prevent the FIFO from receiving additional data until a
l is written to this bit.

RESET - A 1 written to this bit resets the entire interface. The FIFOs
are cleared, zeros are written to all bits of all three registers. (This
effectively clears the RESET command once it has been effected.)

CLK 0,1,2 - These bits set the rate at which output data is clocked
across the interface.

ODD*/EVEN - This bit selects odd or even parity across the interface.

NMSTIO - Setting this bit makes a high level on the incoming STAT O the
highest priority interrupt, thus giving the PC priority over any VME
interrupts. (The level of the request as passed to the 68020 is set by bit
15.)

ENINT - This is an enable for PC interrupts.

CLRINT* - A 1 written to this bit clears all PC interrupts. The bit does
not self-clear, so a 0 must be written to this bit after interrupts have been
cleared.

LSELO,1,2 - These bits set the level of the interrupt passed to the
68020 in response to a PC interrupt request. (A request via the STAT O line
has its interrupt level set by bit 15 rather than by these three bits.)

STOILEV - This bit determines the interrupt level passed to the 68020
(level 3 or 7) in response to a PC interrupt request on STAT 0.

Upon reset, the VPH PC interface wakes up with zeros in all control
registers. This means that SEND and RECEIVE are disabled, the lowest data
rate is selected, ODD parity is indicated, NMSTIO on the incoming STATO is
disabled, all interface-generated interrupts are disabled, all interrupts are
cleared, the interface interrupt level is set to zero, and the STATO NMSTIO
interrupt level is set to 3. The Status and Interrupt Mask Registers are
cleared, as are both FIFOs.

A RESET may be effected by writing a "1" to bit 4 of the Control
Register.

To initialize the interface after a RESET, the required configuration
must be written to the Control and Interrupt Mask Registers. The specifice of

111

how the interface is configured depends upon a previously agreed upon protocol
or configuration. At the very least, the FIFOs must be enabled.

Pollowing are a few guidelines for useful diagnostic code which have
been written for testing the VPH end interface and can be found in the
appendices.

Test Routines For PC Interface

1. Have VPH write a few words to the interface, verify that they are
received by PC by reading PC end Status Register and then reading and
verifying the received data.

2. Have VPH monitor the STATO and STAT1l lines in Status Register. The
VPH should update the STATO and STAT1 bits in the Control Register to echo
changes on incoming STAT lines. The echoed STAT values may be monitored at
the PC end for verification.

3. Send several data values to the VPH. The VPH performs some simple
manipulation on the data, and writes it back to the PC for verification.

Once these tests have been run, it can be assumed that basic PC
interface operations are functional. More complex code may then be generated
for testing the various interface generated interrupt capabilities. The PC
layout of the VPH side of the PC interface is shown in Figure 30. It is a
mezzanine board.

3.2.6.2 I0 Command Processor

An 10 command processor (also called I0 Monitor) has been generated for
the EVA system. The following list of "commands" should contain all necessary
data. For each command, the 16-bit command word will be passed first, followed
by any parameters required for that command. The order in which parameters are
passed is the same as the order in which they appear in this list.

Some of the commands on this list may need to be duplicated in the user
software in order to effect slightly different functionality. For instance,
the "transfer to VPH memory™ commands should be able to handle data which is
resident in PC memory, or which is located in a disk file. The "transfer from
VPH memory" would be similar.

112

i w i—
wo 2INIJd { &
..... DR A v ') .. + « . !
D-woom._i @u_:mdvz : (i}
T gl T)
o al . S
Gm [riswvid Qﬁmmméz Qv:m,_ﬂj w... : c :
e : —
[mam#n A m__ 00SvL Qvoom.zi@wadv& L mw o=,
] e . —
[EzSa 3 Q_‘Wﬂmﬂﬁ AQ EL2STWL 4 ¥ .
..... ..Q

............

........

1 _ mmmmmi AQ

......

-
]

e mmmﬂ: L G-

| Wy _,\-Tmam#n 3 D—

Qw mam.il_

mm«m.zm& mm mm«m,zm& Q mm“m.zmz m EE m-vlﬁlslall_

|

wm“mémm Q_ mma.am& Qv EINIOd ._

ﬁ.mm.m..zv&

S
Gl ..
> 3 []

“.p_::_“.:J vmma.zmj@L _

VPE-FC INT Layout

Figure 30.

113

PC TO VPH COMMANDS

transfer to VPH memory (word writes)
command word = $0001
parameters: wordcount - 16 bit (this is the number of 16-bit words
to be transferred)
VPH starting address - 32 bit
data type - lower bits of 16-bit word
$0 => 32-bit floating-point
$1 => 24-bit unsigned integer (sent as 32
bit with MSB padded with zeros)
$2 => 24-bit signed integer (sent as 32
bit with MSB padded with zeros)
$3 => 16-bit signed integer
$4 => program data (32-bit)
output: none
NOTE: data type is ignored

transfer from VPH memory (word reads)
command word = $0002
parameters: wordcount - 16 bit (this is the number of 16-bit words
to be transferred)
VPH starting address - 32 bit
data type - lower bits of 16-bit word
$0 => 32-bit floating-point
$1 => 24-bit unsigned integer (sent as 32
bit with MSB padded with zeros)
$2 => 24-bit signed integer (sent as 32 bit with
MSB padded with zeros)
$3 => 16-bit signed integer
$4 => program data (32-bit)
output: the number of 16-bit words requested in wordcount
NOTE: data type is ignored

request VME bus

command word = $0003
parameters: none
output: none

relinquish VME bus

command word = $0004
parameters: none
output: none

read DHB flag
command word = $0005
parameters: none
output: one 16-bit word (bit 6 is DHB bit)

read xCSR (byte read)

command word = $0006
parameters: address - 32-bit
output: one 16-bit word

114

write xCSR (byte write)
command word = $0007
parameters: address - 32-bit
value - 8-bit (sent as 16 bit with MSB padded with zeros)
output: none

transfer from VPH to VME
command word = $0008
parameters: number of words - 16-bit (this is the number of 32-bit
words to transfer)
VPH start address - 32-bit
VME start address - 32-bit
output: none

transfer from VME to VPH
command word = $0009
parameters: number of words - 16-bit (this is the number of 32-bit
words to transfer)
VPH start address - 32-bit
VME start address - 32-bit
output: none

unused
command word = $000A

unused
command word = $000B
unused
command word = $000C
unused
command word = $000D
unused
command word = SOOOE
unused
command word = $SO000F

unused
command word = $0010

peek into VPH memory (longword read)
command word = $0011
parameters: address to read - 32-bit
output: one little endian 32-bit word

poke into VPH memory (longword write)
command word = $0012
parameters: address to write - 32-bit
value - 32-bit
output¢ none

115

peek into 020 register
command word = $0013
parameters: register to read - 16-bit

$0 => DO
$1 => Dl
$2 => D2
$3 => D3
$4 => D4
§5 => DS
$6 => D6
§7 => D7
$8 => A0
$9 => Al
SA => A2
SB => A3
$C => A4
$D => AS
SE => A6
SF => A7
$10 => PC
$11 => CCR
$12 => SR
$13 => VBR
$14 => SFC
$15 => DFC
$§16 => CACR
$17 => CAAR
$18 => USP
$19 => MSP
$1A => ISP

output: one little endian 32-bit word

poke into 020 register
command word = $0014
parameters: register to write, size - 16-bit

byte word longword
$0000 => DO §0100 => DO $0200 => DO
$0001 => D1 $0101 => D1 $0201 => D1
$0002 => D2 $0102 => D2 $0202 => D2
NOTE: pokes $0003 => D3 $0103 => D3 $0203 => D3
to CCR & SR $0004 => D4 $0104 => D4 $0204 => D4
are always $0005 => D5 §0105 => D5 $0205 => D5
word opera- $0006 => Dé $0106 => D6 $0206 => D6
tions. Pokes $0007 => D7 $0107 => D7 $0207 => D7
to VBR, SFC, $0008 => A0 $0108 => AQ $0208 => A0
DFC, CACR, $0009 => Al $0109 => Al $0209 => Al
CAAB, USP, $O000A => A2 SO10A => A2 $020A &> A2
MSP, and ISP $S000B => A3 $010B => A3 $020B => A3
are always $000C => A4 $010C => A4 §$020C => A4
longword op- $000D => AS $010D => AS $020D => AS
erations. The SO00E => A6 SO10E => A6 $020E => A6
VPH command SO0OF => A7 $O010F => A7 $§020F => A7
processor will $0010 => PC $0110 => PC $0210 => PC
accept any $0011 => CCR $§0111 => CCR $§0211 => CCR
8ize for these $0012 => SR $0112 => SR §0212 => SR
registers, but $0013 => VBR $0113 => VBR $0213 => VBR
will always $0014 => SFC §0114 => SFC $0214 => SFC
utilize the $0015 => DFC $0115 => DFC $0215 => DFC
correct sizing $0016 => CACR $0116 => CACR $0216 => CACR
when carrying $0017 => CAAR $0117 => CAAR $0217 => CAAR
out the poke. $0018 => USP $0118 => USP $0018 => USP
$0118 => USP $0218 => USP $0218 => USP
$0019 => MSP $0119 => MSP $0219 => MSP
S001A => ISP $011A => ISP $021A => ISP

value - 32-bit (only the lower byte or word are used for
byte or word writes)
output: none

reset VPH

command word = $0015
parameters: none
output: none

reset PC interface

command word = $0016
parameters: none
output: none

initialize PC interface

command word = $0017
parameters: control register value - 16-bit
output: none

set PC interface interrupt mask
command word = $0018
parameters: mask value - 16-bit
output: none

117

read PC interface status register
command word = $0019

parameters: none

output: one 16-bit word

read PC interface interrupt register
command word = $001A

parameters: none

output: one 16-bit word

read VPH status latch

command word = $001B
parameters: none
output: one 16-bit word

write VPH status latch
command word = $001C
parameters: status latch value - 16-bit bits 0,1 are status bits
bits 4,5,6,7 are Zoran 1,2,3,4 interrupt flags
all other bits are don’t cares
output: none

write Zoran reset latch

command word = $001D
parameters: reset latch value - 16-bit bits 0,1,2,3 are reset
flags for Zoran 1,2,3,4
output: none

load DSACK SRAM

command word = $OOLE
parameters: address - 32-bit the vector A[31,24..18]) addresses
the SRAM; all other bits are don’t cares value - 16-bit the lowest
nibble goes into SRAM; all other bits are don’t cares
output: none

execute starting at address

command word = $Q01F
parameters: start address - 32-bit (enter LSW first)
output: none

transfer PC interface to VPH memory (longword writes)
command word = $0020
parameters: longword count - 16-bit the number of 32-bit words
to transfer
start address ~- 32-bit the starting
address in VPR (entered LSW first)
data type -~ 16-bit (ignored)
output: none

transfer VPH memory to PC interface (longword reads)

command word = $0021
parameters: longword count - 16-bit the number of 32-bit words
to transfer

118

Ll

AR

start address - 32-bit the starting
address in VPH (entered LSW first)
data type - 16-bit (ignored)
output: the number of longwords requested in longword count

3.2.7 HSIO Configuration

Each board within a CPH system has a small array of registers whose
purpose is to allow downloading of configuration data and to provide a
mechanism for the communication of control information. Some of these
registers are not registers in the true sense of the word, but provide various
functionality to provide the required range of special communication tasks
required. A description of these registers as they must appear, for example,
on the cache memory boards follows. The HSIO is the information highway for
this communication.

Across the HSIO bus are also control and status information about the
configuration of the current CPH system. This status information consists of
the number of cache memory banks, number of CPH processor boards installed,
and other such information. That status will be contained in the CPH
processor status word which will operate as shown in Figure 31.

HSIO LINEAR ADDRESS SPACE/IO SPACE

The HSIO bus can access a 24-bit address space. This "linear address
space" will be used to access resources in all of the CPH systems the IOP
serves. In order to be able to access configuration information on any board
in any system, an additional address space, referred to as the "10 Space,” has
been added. The I0 Space will simplify system mapping and access to
configuration/communication registers. A control bit on the HSIO bus will
indicate when an 10 Space access is to occur, as opposed to an access to the
Linear Address Space. This line will be an active low line which when
asserted dictates an access to the IO Space. This line is named the /HSIOMEM
line.

When /HSIOMEM is asserted, the address put on the bus will have the
following format:

2 11

3 109876543210
s|sisie[eje|siBIR[rir

X...x[2[1101*]3]2[1{0f2]1]0

Bits 11 through 23 are don’t carer

Bits 8, 9, & 10 (S[2:0]) are the System Address bits. These bits select
one of eight possible systems.

Bits 3 through 7 (B[4:0)) are the Board Address bits. These bits select
one of thirty-two possible lLoards within a system.

119

[rerory sncr]
| [nenony

BANK n
CPK PROCESSOR ~——) é?}k Y |EN
REG 1 0F 16| tri-state)
SELECT
MEMORY CONFIGURATION
) {SEL
REGISTER 0t
1/0 PROCESSOR
STATUS WORD ADDRESS
DECODE
INENORY BANK nfl‘
] MEMORY
BANK ntl
CPH PROCESSOR ~——) !I;lIO{R ‘) |EN
fE6 1 0F 16] tri-state)
SELECT
MEMORY CONFIGURATION {seL
REGISTER 0t

1/0 PROCESSOR
STATUS WORD ADDRESS
DECODE

Figurs 31. CPH Status Word

120

N Ot OMMOVUT EMrX

ke e S

Bits 0, 1, & 2 (R[2:0]) are the Register Address bits. These bits
select one of eight possible registers on a given board.

Each board will need a system of switches and/or jumpers to set the
system and board addresses for that particular board.

On the backplane, a bit similar to /HSIOMEM exists. This is the /CONFIG
microprogram bit which when asserted indicates that the address on Port A/C is
destined for the configuration registers rather than the general address space
of the CPH system. Data to be written to the configuration registers will be
written in Port C and data read from the registers will appear on Port A. The
/WRCAr and /RDA microprogram bits will be used to determine a processor
configuration write and read, respectively.

REGISTER DESCRIPTION

Each of the registers within the IO Space on a particular board is a 16-
bit register. Since all data paths are 32-bit paths, the convention will be
adopted of using the least significant 16 bits of a given path when accessing
an IO Space register. In addition, in the case of a complex (64-bit
real/imaginary) path, the real portion of the path will be utilized.

The wupper two registers are 16-bit mailbox registers which are
accessible from the HSIO bus and the backplane. The register located at the
board base address + 4 is accessible from the HSIO Bus only. Register base
address + 5 is accessible from the backplane only. Each of these registers is
read/write from its respective buses.

The register at the board base address is a read-only location which
contains ID information for that board. This register is accessible from
either the HSIO or the backplane. The format of the register is:

Bits 0:3 - a 4-bit board ID code.
Bits 4:7 -~ a 4-bit memory size code.
Bits 8:11 - a 4-bit block size code.

Bits 12:15 a 4-bit read latency time code.

These bits may be hard-wired. However, iu view of the fact that the
codes have not yet been defined, and to allow for future re-definition, these
16 bits will be set with jumpers.

The register located at the base address + 1 is important. This
register is a compound, special-purpose read/write register. Eight bits are
semaphore bits, and eight bits are a "mailbox" register for passing control
information between the HSIO and the backplane. A description of how the
semaphores and mailbox must work follows.

Bit 0 is a system interrupt bit. This bit must therefore be passed
through an inverting high-drive open-collector driver to the appropriate
System Interrupt line on the HSIO. Again, jumpers will be used for routing
this bit to the appropriate System Interrupt line.

121

Bit 1 is defined as "/VALID." This bit is active low to indicate if P/H
(Bit 2) is valid. This bit is read/write from both the HSIO and backplane.

Bits 2:4 of this register are for semaphores which are set by the
backplane and cleared by the HSIO. When a write to this register from the
backplane occurs, a zero in any bit position causes the corresponding bit in
the register to remain unchanged; a one in any bit position causes the
corresponding bit in the register to be set (to one). When a write from the
HSIO occurs, a zero in any bit position causes the corresponding bit in the
register to remain unchanged; a one in any position causes the corresponding
bit in the register to be cleared (set to zero). A read from either bus
simply returns the state of the three bits. Bit 2 is defined as "P/H" and
indicates control of the cache board. If Bit 2 is low, the HSIO has control
of the board, but if the bit is high, the processor has control of the board.
Bit 1 is used to determine if the state of this bit is valid. Bits 3:4 are
undefined, general purpose semaphores.

Bits 5:7 of this register behave just as Bits 2:4, except that they set
from the HSIO and clear from the backplane. All three of these bits are
undefined, general purpose semaphores.

Bits 8:15 of this register are to form a mailbox between the HSIO and
the backplane. That is, these eight bits are read/write from either bus.
When a read occurs, the bits retrieved reflect the most recent write from the
other bus. A write from one bus will not overwrite the most recent write from
the other bus. This behavior is achieved with two 8-bit registers in parallel
being oriented in opposite directions. An HSIO read or backplane write
accesses one register, an HSIO write or backplane read accesses the other.

An interesting aspect of these registers’ behavior is that access from
the backplane to any of these registers is achieved by qualification of a bank
address placed on the backplane with the /CONFIG bit asserted. When a valid
bank address is presented during a READ cycle, only the least significant
board at offset zero responds to the read request. During a WRITE, however,
the data presented is written to ALL boards within that bank. The reason for
this is that the processor views memory as banks with a maximum depth of 256k
- it has no concern that there may be multiple boards within a bank. The IOP,
on the other hand, has no conception of "banks" of memory - each board is a
separate entity, regardless of what bank it belongs to, or whether it 1is
configured as cache or Auxiliary. This means that any "message" to be passed
from the IOP to the processor must be written to the correct board (least
significant, offset zero). It will therefore be up to the programmer to keep
track of such details.

The registers located at the base address + 2 and + 3 are configuration
registers. These registers are loaded via the HSIO bus with information which
assigns each of the blocks on the cache board a cache and/or Auxiliary memory
bank address and offset into the block. Another bit per block assigns most or
least significant status, and another bit selects the board as cache or
Auxiliary memory. Bits are assigned as follows:

Bits 0:3 - Bank Address

122

il £

wsh

Bits 4:7 - Offset Block 0

Bits 8:11 - Offset Block 1

Bit 12 - MSB/LSB Block 0
Bit 13 - MSB/LSB Block 1
Bit 14 - Aux/Cache

Bit 15 - Undefined

3.2.8 Crossbar

In order to minimize chip count and processor board space, a crossbar
chip study was started. In December of 1989, AMCC formally quoted to STC
their development costs for the ASIC crossbar design. A design quote by
customer through netlist was $85,000 with 14 weeks schedule. A design quote
by customer (STC) at AMCC was $95,000 with 14 weeks schedule. A custom 4:l
Mux with input enable was quoted at $10,000 with 4 weeks delivery. Production
prices for up to 25 prototypes was $750 per piece and $504 in quantities of
100-499. They specified an 80 MHz clock in a 301 PGA configuration using
BiCMOS. Space Tech then sought out ILSI more aggressively for their more
economical ASIC design.

The new chip in cooperation with ILSI was developed as an innovative
crossbar switch at an NRE cost of $35,000 that is particularly well-suited for
high-speed, multiprocessor, microprogrammable, pipelined environments. It is
now described.

This crossbar differs from others currently available in that it is both
high speed (40 MHz) and has a large number of ports (12 by 14), all control
lines are separately accessible, and it has an intermal multiported,
configurable register file.

The XB1210-40C crossbar switch is an ASIC fabricated with l-micron CMOS
technology. All pins use standard TTL levels. The device is packaged in a
256-pin PGA and supports Control Clock rates up to 40 MHz. It supports two-
phase operation by means of two independent data clocks which are used to
clock the output port pipeline registers.

This crossbar has 10 dedicated input ports, 12 dedicated output ports
and 2 bidirectional ports. Each output port can access data from any input
port. All ports are 4-bits wide externally and all internal data paths are 8-
bits wide. Input ports have a 4-bit demultiplexing latch and output porte
have a multiplexor to choose least significant or most significant bits from
the pipeline. This device is particularly well suited to architectures
employing the BIT Multiplier/ALU chipset, where 8 crossbar chips may be
paralleled to achieve a crossbar system that is 32 bits wide externally and 64
bits wide internally.

All output ports are pipelined with a pair of parallel registers - ome

for the first phase and another for the second phase. A control line is
provided for each output port to select data from either register. These

123

pipeline registers are clocked with two clocks - First Phase Clock and Second
Phase Clock. The Second Phase clock may be tied low for single phase
operation. All control lines are selectively pipelined and may be clocked
using the Control Clock which is also used to clock the register file.

Since all control lines may be accessed simultaneously, the entire
crossbar may be reconfigured every clock cycle as opposed to requiring many
cycles to set up paths as in crossbars where the control signals are bused
together.

The most unique feature of the XB1210-40C is an internal multiported,
configurable register file. This register file is a four port synchronous
static RAM organized as 64 words by 8 bits. It can also be used
asynchronously by tying the Control Clock low. Each port has its own address
and all ports may be used simultaneously. Each register file port may be
accessed by any of the crossbar input ports. The register file may be
configured in different ways - as normal static RAM, as 8 pipeline registers 8
deep, 4 pipeline registers 16 deep, 2 pipeline registers 32 deep or as a
circular buffer. Figures 32 to 35 depict shift mode 1, 2, and 3, and XBAR to
GPR data paths. These operating modes, non-pipelined synchronous and
asynchronous, and pipelined synchronous are described later.

The crossbar consists of four major components - input ports, output
ports, multiplexers, and a four port register file. All internal data paths
are 8 bits wide while all I/0O ports are 4 bits wide. Demultiplexing latches
are provided on all input ports and multiplexers are used on all output ports.
This architecture provides high speed and compatibility with wvarious
processors.

INPUT PORTS

The crossbar has ten dedicated input ports (Il_[0..3) to I10_[0..3}) and
two bidirectional ports (I0l1l1_[0..3] and I012_[0..3]). Each input port has a
4-bit demultiplexing latch and an MSWEN control input associated with it. The
most significant 4 bits of data are presented to the input port while MSWEN is
brought high. MSWEN should then be brought 1low. Finally, the least
significant four bits should be presented to the input port and held. This
provides the 8-bit word presented to the intermal bus.

MULTIPLEXERS

After passing through the input ports, data is passed onto an internal
bus. This bus 1s 112 bits wide - 8 bits for each input port and 8 bits for
each of two register file read ports. Any 8-bit path of this bus may be
selected by the multiplexers as the data source for the fourteen output ports
or two register file write ports.

124

e ~

e e -

—{R41[-\R42[AR43 [Re4 |-{R45 | Re6 5@7
—\R49|{R50|-{R51|—{R52 |- Rs3 | {Rs4}-rss

—R57 |58 {—{Rs9| {60 |-[Re! —a[EE

Figure 32. GPR Shift Bequence Mods 1

125

—) RS

R17

R25

RS2 R53 [-{R54 |- RsS 2

—{r60|—3{R61 |- RE2 R63|

Figure 33. GPR Shift Sequence Mode 2

126

~eHEHEHEHEHEHE

e

R8 [R9 [-{R10|3{R11 eﬁu—;——) RI3|-AR14

2
o

—{R17|{R18|R19 —)R20|{R21}-{R22

R24 |—3{R25 |- R26 [-YR27 [R28|—{R29 |- R30

Ra2|-{Ras]|-{Rae | {ras]{rss | {ra7| frsa}

L]

R40 [-{R41{—A R42 |-5{R43 |- Re4 {45 A Re6

L

#]|[E]| (3]

—R4g [R50 [—{R51[—3{Rs2 | -{Rs3 | Ree

RS6 -3 R57 |- R58 |-3{R50 || R60 | R61{—{ R62

Figure 34. GFR Shift Sequence Mode 3

127

CROSSBAR

~ 1a 8] |
RO

R1
R2

— N
R6J3

L Ja B

\/\/\./
64 BITS

Pigure 35. XBAR to GPR Path

128

A

Each output port has four select lines SELn{[0..3] where n is the port
number. The value placed on these inputs determines the source of the data to
be sent to the output port registers. As an example, placing a hex value of
*5" on any set of SEL inputs will select input port 5 as the data source. In
addition, a hex value of "F" will disable the output port and a hex value of
"0" will select the output port register as the data source. This will cause
the ports' registers to hold their current state. The ports® registers will
also hold their state when the output is disabled with an "F". The
multiplexer select inputs for the register file write ports. (SELA[0..3] and
SELB(0..3)) are similar to the ones for the output ports; however, a hex value
of "0" will send all zeros to the register file and a hex value of "F" will
send all ones.

OUTPUT PORTS

Each output port (01_[0..3] to Ol4 _[0..3]) and each I/O port
(I011_[0..3] and 1012 [0..3]) have two multiplexers and two 8-bit registers.
The operation of the first multiplexer i1s described above and is used to
select the source of data presented to the output registers. These registers
are clocked by separate, anti-phase clocks. The phase 1 register is clocked
by the low-to-high transition of CLKl, and the phase 2 register is similarly
clocked by CLK2. The outputs from these registers are then input to the
second multiplexer.

The second multiplexer has two control lines, PSEL and MSWSEL, which are
used to select 4 bits for the output buffer. A low level on PSEL selects data
from the phase 1 register while a high level selects data from the phase 2
register.

The MSWSEL input selects between the most and least significant 4-bit
nibbles. A low level on MSWSEL selects the 4 least significant bits to be
output.

REGISTER FILE

The register file is a four port synchronous static RAM memory organized
as an 8 by 8 array of 8-bit registers. These registers are clocked by the
rising edge of CLK3. The register file has two read ports (RPA AND RPB) and
two write ports (WPA and WPB). Each port has its own address and all ports
may be used simultaneously. Writing to the same location from both write
ports simultaneously is allowed. Whenever this happens, the data from RPA is
used.

The write address inputs are WRA_[0..5] and WRB_[0..5]. Each write port
also has an active low enable, /WRENA or /WRENB. The read address inputs are
RDA_[0..5) and RDB_[0..5]. The data read from the register file may be
accessed by any output port or be written back into the register file. A hex
value of "D" placed on any output port’s SEL select lines will select RPA and
a value of "E" will select RPB.

REGISTER FILE SHIFT MODES

Inputs SM1 and SMO are used to configure the register file as a shift
register. When both of these inputs are low, the register file functions like

129

a normal static RAM. When SMO is brought high while SMl remains low, each row
of the register file becomes an eight deep shift register. Writing to the
first register of each row causes the shift. The seven remaining registers of
each row will be written to with the data from the preceding register. The
old data in the last register is lost forever. Writing to a register other
than the first register only updates that specific register. Reading never
modifies any data.

Bringing SM1 high while leaving SMO low links pairs of rows to give a
configuration of four shift registers, each 16 registers deep. Bringing both
SM1 and SMO high links four rows together yielding two shift registers, each
32 registers deep.

OPERATING MODES

The crossbar has three possible modes of operation: non-pipelined
synchronous, non-pipelined asynchronous, and pipelined synchronous. The MODE
input selects whether certain other inputs pass through input pipeline
registers, or if these registers are bypassed. The affected inputs are:

SELx[0..3], WRA_[0..5), WRB (0..5], RDA [0..5], RDB_[0..5], PSELx,
SELA [0..3), SELB_[0..3], /WRENA, /WRENB, SMl, AND SMO. Inputs which are not
affected are: 1Ix[0..3], MSWENx, and MSWSELx.

A low level on MODE causes all inputs to bypass the input pipeline
registers. With CLK3 left running, non-pipelined synchronous mode operation
is achieved. This 1s the normal mode of operation and no special
considerations are involved.

If CLK3 is tied low while MODE is held low, non-pipelined asynchronous
operation is invoked. In this mode, the register file registers are clocked
with the rising edge of /WRENA or /WRENB. Asynchronous register file writes
can therefore be accomplished in this wode. Operation of the input ports,
output ports, and multiplexers is unaffected by the absence of CLK3.

If MODE is brought high, pipelined synchronous mode operation is
determined and CLK3 must be left running. This is because CLK3 is used to
clock the input pipeline registers. The main consideration in this mode of
operation is the affected inputs must be presented to the crossbar one CLK3
cycle sooner, and slightly different set-up and hold times may be involved.

A number of important control signals are listed next in Figure 36.
Register file and port control follow in Figure 37. Then, timing charts for
the mode 0 operations can be found in subsequent Figures 38 through 43. These
data sheets formed the specifications for contracting the fabrication effort
out to ILSI in Colorado Springs. Testing of the crossbars was accomplished at
ILSI and later at Space Tech. The same test vectors by ILSI were on our
emulyzer to verify ILSI tests. Those vectors can be found in the ILSI manual
for the crossbars.

130

-

CLK1 Active high clock for phase one

output port registers.
CLK2 Active high clock for phase two

output port registers.
CLK3 Active high clock for register file

and control input pipeline registers.
MODE Bypasses control input pipeline

registers when low.
1n_[0..3] to Datao input ports to the crossbar
110_[0..3] and register file,
MSWEN1 to Controls input port demultiplexing latches.
MSWEN12 Latches are transparent when high.
SEL1_[0..3] to | Select inputs for output port registers.
SEL14_[0..3]
PSFL1 to Selects phase one register for oulput
PSEL14 when low and phase two when high.
MSWSEL1 to Multiplexer for output porls. Selects
MSWSEL14 most significant four bits when high.
01_{0..3] to Data outpul ports from crossbar ond
010_{0..3 register file.
013_[0..3
014_[0..3
1011_{0..3 Bidirectional data ports.
1012_1{0..3
SELA[O..3] Select inputs for register file write port A.
SELB[0..3] Select inputs for register file write port B.
WRENA Active low write enable for register file port A.
WRENB Active low write enable for register file port B.
WRA[0..5] Address inputs for register file write port A.
WRB[0..5] Address inputs for register file write port B.
RDA[0..5] Address inputs for register file read port A.
RDB([0..5] Address inpuls for register file read port B.
SMODEO Shift mode conlrol inputs for register file.,
SMODEN

Figure 36. Control Signals

131

Output Port Control

Register File Control

“2AN%3lS] Output Port %Sl Register File

!3 5 Ig E Register Source 5 E !3 E Write Source

wninjuln njnjnln

010]0]0] Registers Hold Current Value olofo]o] Al Zeros (Clear Register

0]0]0] 1] Input port #1 0]0]j0}] 1§ Input port #1

0]0]1]10] Input Port #2 0]011]01 Input Port ¢2

0{0]1}1] Input Port #3 0]0f1]1]Input Port #3

0]1{0]0} input Port #4 0] 1]0]0] input Port #4

0]1]0] 1] input Port #5 0]1]0}] 1] Input Port #5

0[11110] input Port g6 O U] input Port g6

o111 Dinput Port g7 of111] 1] input Port #7

1{0J0]0] input Port #8 1]0{0]0] Input Port #8

110{0] 1] Input Port #9 1]0]0} 1] input Port 49

10} 110{ Input Port #10 1101 110] input Port 410

O] 1] H] Input /Output Port #11 o] 1] 1] input /Outpul Port 11

1]11]010] Input /Output Port #12 1[1]0]0] input/Output Port g12

111101 1] Register Fila Raad Port A 11110] 1] Reqgister tils Raad Port A

1]1111]0] Register File Read Port B 1] 11110} Register File Read Port 3

111} 1] 1] Output High Impedance 1[1]1]1] all Ones (Set Register)
bl [=] . “

Sidl Source for Output dla Register File

215 Port On[0..3] SISl Shift Mode Select

0}0] Least Significant Phase One Register 0Jo] Normal "RAM” Mode

0] 1] Most Significant Phase One Register 0[1] 8 by 8 Shift Register Mode

1]10] Least Significant Phase Two Register 1]0] 4 by 16 Shift Register Mode

0] 1] Most Significant Phase Two Register 0]1] 2 by 32 Shift Register Mode

Figure 37. Register File and Port Comtrol

Input Port to Output Port

Transaction for CLKI1
MODE=1 PSEL=0

tsur [o1| tsuz tvo2

Ix(0. .31 272K win XS ohte X777 77777
tsuq
MSWENX

SELy[@..3] WW
ck3 -/ _f _f _/ /N
tpD) tHD4
CLK1 / N _____

MSWSELy 2777007777777 |
s

oyte..3) LI K TR NG RN

PARANETER DESCRIPTION MIN [MAX JUNITS
teu Input Data to MSHEN LOW Set-up ng
tuo) Input Hold from MSUEN LOW ns
toy2 Input Data to CLK) HIGH Set-up ns
tun2 Input Hold From CLKI HWIGH ns
tsue Set~up From MSUEN LOU to CLKI HIGH ns
teyd SEL Inputs to CLK3 HIGM Set-up ns
103 SEL Inputs Hold From CLK3 HIGH m——
t poy CLK1 HIGH to Output Data Ualid ng
t e Output Data Hold From CLK1 HIGH ns
t pp2 NSUSEL to Output Data Valtid ns
t yos Output Data Hold From MSUSEL Transition ns

Figure 38. Timing Charte

133

Input Port to Output Port

Transaction for CLKZ
MODE=1 PSEL=1

tsy Jhoi| tsuz two2

Ixt0..31 7K E WK a2
=

MSWENx 27770 X

teus |twoa

SELy (0. .3] N AL IIIIY,

ok T\

teol HD4
ck2 /7 ___f ——

MSWSELy L7777 777777 |

tHos
Oyl0..3) LA 20s DRTAXLS mhzj@

PRRAMETER DESCRIPTION HIN | MAX |UNITS
tsus Input Data to MSUEN LOM Set-up ns
two) Input Hold from NSUEN LOM ns
teu2 Input Data to CLK2 HIGH Set-up ns
tHo2 Input Hold From CLK2 HIGH ns
tsye Set-up From MSHEN LOM to CLK2 HIGH ns
tsus SEL Inputs to CLK3 HIGH Set-up ns
twns SEL Inputs Hold From CLK3 HIGH ns
tppt CLK2 HIGH to Output Data Valld ns
¢t D4 Output Data Hold From CLK2 HIGH ns
t pp2 NSUSEL to Output Data Walid ns
U5 Output Data Hold From MSUSEL Transition ns

#igure 39. Timing Charts

134

OUTPUT PORT CONTROL

MODE=0

tro %o
PSELx ZZZ7Z73
|
SELx(@..3] iF
Ox[©..3) PHASE | DATA szmra

PARANETER DESCRIPTION NIN | MRX | UNITS
tep PSEL Transition to Qutput Date Velld na
Ho Output Dats Hold From PSEL Transition ns
tuz SEL = F to Output High lapedence ne
2 SEL ¥F to Output Lou lepedence ‘s

tsy ot

—-

PSELx ZZ727772

SELx(0..3) ZZZZ2K _wusr X _wweir X e X _wmwir X

CLk3 _J \ : \ | \ — \

tpo | two2 w2 W2

Ox[8..3] W(W ";'_‘i CRETI e e S

PRRANETER DESCRIPTION nIN | AX | UNITS
tgy PSEL or SEL Inputs to CLK3 Set-up ns
o1 PSEL or SEL Inputs Mold From (LK HIGH s
tpp CLK] HIGH to Ouiput Dats Valld ne
Yo, Qutput Gats Hold Prom CLKD HIGH ne
L Output Wigh lepedence Fros QLK MIGN i
W2 Output Lou lepedance Frem (LK) HIGH "

Figure 40. Timing Charts

135

Input to ‘Output Port Transaction for CLKI1
MODE=0 PSELy=0

»— Syt —ea-tHD1-se—15U2 —eet HD2 +

x[0..3) 72227773 WS DATA IN__ D LS DATA IN & A e
tsus

MSweNx 722277777 X

. ptSus—emtHO3«
SELA0..3) 22222222 2222222 NN s I

r-—‘ PD1 = r—'no

) —tpp2 -« I
MSWSELy /22 /o7 7777 - !
| [- HOS—
oe.3) o oA ST X e BATR U7 T
Parameter Description Min [Max | Unils
'SU1 Input Dato to MSWEN_LOW Sei-up o ns
HD1 input Hold From MSWEN LOW Il /NA ns
sy2 Input Dota_to CLK) HIGH Set—up 1d_| NA ne
Tho2 inpul_Hold From CLK) HIGH [W) na
Su4 Set-up from MSWEN LOW to CLK) HIGH e | N- ns
Su3 SEL _Inputs to CLK) HIGH Set-up 17 | NA ns
THDJ SLL inputs Hald From CLK1 HIGH O T NA ns
) CLK1 _HICH to Oulput Dola Valid 4 17 ns
THp4 Output Data Hold From CLK1 HIGH ns
PD2 MSWSEL to Oulput Data Valid 3 1| v ny
HDS Output Dala Hold From MSWSEL Transilion ns

Figure 41. Timing Charts

136

o i

ap T e —

CLK3
RDA or
RDB
SELx[0..3]

CLK1

CLK2

Ox(@..3]

REGISTER FILE READ

MODE=0

S U WY [U

tpoy
PHASE |

\ | \
< PHASE | DATA AUAILABLE Do
L /
—{____PHASE_2 DATA AURILABLE H>—

tpo2
DATA P1or P2 oata Y pwast 2 oatn_ /77

PARAMETER DESCRIPTION MIN | MAX | UNITS
tsui ADA or SEL Inputs to CLK3 Set-up ns
tvo1 ADA or SEL Inputs Hold From CLK3 HIGH ns
tou2 ADA or SEL Inputs to CLK3 Set-up ns
twp2 ADA or SEL inputs Hold From CLKI HIGH ns
tppi CLK1 HIGH to Output Data Valtd ns
tpn2 CLK2 NIGH to Output Data Valid ns

Yigure 42. Timing Charts

137

REGISTER FILE WRITE
MODE=1

tsur |twos

Ix[8..3] LU/ A /KNS DRTA KLS DATA
MSWENX
SELARLA..3] or
SELB[@..31
CLK3
WRALB..5] or
WRB[AO..5]
WRENA or
"HRENB
PARAMETER DESCRIPTION MIN | MAX | UNITS
tsui Input Data to CLK3 HIGH Set-up ns
tHo1 Input Data Hold From CLK3 HIGH ns
touz MSHEN LON to CLK3 HIGH Set-up ns
tous SELA or SELB to CLK3 HIGH Set-up ns
tuo2 SELA or SELB Hold From CLK3 HIGH ns
toye WARA or WRB to CLK3 HIGH Set-up ns
tvo3 WRA or WAB Hold From CLK3 HIGH ns
tsus WRENA or HAENB to CLK3 HIGH Set-up NS
tHo4 WAENA or URENB Hold From CLK3 HIGH ns

Figure 43. Timing Charts

138

w———

L Ay, tuE

3.2.8.1 Testing the Crossbars

Characterization tests were performed by ILSI at ILSI before shipment to
Space Tech. Those test sequences and vectors are listed in the ILSI
specifications manual under separate cover. Verification tests were performed
at Space Tech with a Hi-Level Emulyzer connected to the input and output ports
of each device. The same vectors were used at Space Tech as were used at ILSI
to confirm the operation of each device. Of the ten shipped to us, only one
failed and was dead on arrival. It was replaced by ILSI after they confirmed
our results. The vectors used by Space Tech and ILSI set up ls and 0s in
adjacent bits alternating and repeating so that crosstalk could be discovered.
Clocks were adjusted from 1 to 20 MHz and the chips passed at all clocks
except 20 MHz in some modes. Those modes are not used in the CPH so they were
important. The important modes were mode O modes and all passed these mode
tests at all clock speeds.

The typical test setup of vectors used are shown in the following sheet
from the engineer’s notebook in Figure 44. Here, we can see that read and
write ports A and B were activated with the several input data control lines
and output data control lines. The testing took approximately 4 hours per
device since 12xl14 combinations of configurations were to be tested by
numerous test vectors. The Space Tech test fixture is shown in the next
drawing as Figure 45. The test fixture uses the pinout assignments for the
crossbar chip as shown in Pigure 46. A 6U Mupac VME board was used with PALs
and registers to clock test signals and controls onto the crossbar under test.

A PAL function was created for the test jig, XBARIM.POS, to input data
into the I/0 portse in a pipelined, synchronous manner. The test vectors of
mode 0 could be used in testing mode 1 with the following modifications. The
write pulse had to be shifted from the least significant vectors to the most
eignificant positions. The write pulse had to be widened by several
nanoseconds (accomplished by modifying XBAR2.PDS to include an additional
input, namely async). The input data to the 1/O0 ports had to be shifted one
cycle sooner to offset the additional pipelining the PALs now present. And
the SELx data of any F's (to high impedance output PORTx) had to be shifted
one cycle sooner also (due to mode 1 internal pipelining of SELx data).

With the modifications described and one new set of vectors to test all
of the internal pipelining, six sets of vectors were used to test mode 1
operation. After creating output reference files to compare XBAR outputs to,
testing of the XBAR chips commenced in earnest.

While testing the XBAR, some sets of vectors ran better if a different
amount of delay was used between SLK3 and PGCLK. Thus, a "gate delay line"
was introduced to the jig to allow selective clock skewing. The delays needed
for optimum testing are listed in the Engineer’s Notebook which gives the
complete testing procedure.

The result of testing was that 9 of 10 chips ran all 11 sets of test
vectors with no erroneous output. The tenth chip, however, did not
successfully run even one set of vectors. Several clock speeds and skews were
tried and didn’t get any improvement. The chip was then packsged up and sent
back to ILSI for replacement.

139

Date: 1/23/92 File: F:\PHIL\TEWP\XBAR IN W
1 - 2222722222222222272222222920700209209 000N MNMINNNNNIININIY
2 - PATTERN GENERATOR OUTPUT WORDS
3 - 2777727272972727227727997272277722222721227271222272922222227227212777777
4_ ARARARAAAAAAARAARAAARARARAARAARARAAAMAARAAANARAAAAARRAANAANALARAAAANALARANRA
S-
b - HSN LSN
7 - WoRo FORMAT: HEXL/HEX2/HEXY/ IHEX34/HEX35/HEX36
9-
10 - NIBBLE LEGEND:
12 - HEX1 = /MCA, XXX, WRA-S, WRA-4 -
13 - HEX2 = WRA-3,"WRA-2, WRA-1, WRA-0 }== WRITE PORT A CONTROL
i - MEX3 = SELA-3, SELA2, SELA-1, SELA-O __ |
16 - HEX4 = /HCB, XXX, WRB-S. WRB-4 i
17 - HEXS = WRB-3, WRB-2, WRB-1, WRB-0 |- WRITE PORT B CONTROL
18 - HEX6 = SELB-3, SELB-2, SELB-1, SELB-0 .
20 -
a - HEX? = XXX, XXX, RDA-S, RDA-4 - READ PORT A CONTROL
gg - HEX8 = RDA-3, ROA-2, ROA-1, RDA-O !
u - HEX9 = XXX, XXX, RDB-5, RDB-4 |-~ READ PORT B CONTROL
52 - HEX10 = RDB-3, RDB-2, ROB-1, RDB-0 !
2 -
2 - HEXIL = SEL1-3, SEL1-2, SEL1-1, SEL1-0 ,'
29 - HEX12 = SEL2-3, SEL2-2, SEL2-1, SEL2-0 i
30 - HEXI3 = SEL3-3, SEL3-2, SEL3-1. SEL3-0 i
3 - HEX14 = SELA-3, SELA-2, SELA-1, SEL4-0 |
3 - HEXIS = SELS-3, SELS-2, SELS-1, SELS-0 ,
33 - HEX16 = SEL6-3, SEL6-2, SELB-1, SEL-0 ,
N - HEX)? = SEL7-3, SEL7-2, SELI-1. SELT-0 }== OUTPUT DATA SOURCE
3 - HEXI8 = SELB-3, SEL8-2, SEL8-1, SEL8-0 |
3% - HEX19 = SEL9-3, SEL9-2, SEL9-1, SEL9-0 |
3 - HEX20 = SELI0-3. SEL10-2, SELI0-1. SEL10-0 |
38 - HEX21 = SEL11-3, SEL11-2, SEL11-1, SEL11-0 ,
3 - HEX22 = SEL12-3, SEL12-2, SEL12-1, SEL12-0 !
10 - HEX23 = SEL13-3; SEL13-2, SEL13-1, SEL13-0 |
i HEX24 = SEL14-3, SEL14-2, SEL14-1, SEL14-0 .
43 -
“ - HEX2S = 11-3, -2, N1, [0 T
45 - HEX26 = I2-3, 12-2, I2-1., I2-0 ,
4 - HEX2? = I3-3. I3-2, 131, I3-0 ,
4 - HEX28 = 14-3, I4-2, Qd-1, I4-0 !
4 - HEX29 = [S-3, I§-2, I5-1, IS-0 |
9 - HEX30 = [6-3, 162, 1é-1, Ié-0 1= INPUT OATA
50 - NEX3L = D73, D-2, D11 170 !
81 - MEX32 = I8-3, 18-2, I8-1, 18-0 |
52 - NEX33 = 19-3, 19-2, I9-1, I9-0 ,
§3 - NEX34 = 110-3, 110-2, 110-1, 110-0 !
5 - HEX3S = [011-3, 1011-2, IO11-1, [011-0 s |
8 - WEX36 = 1012-3, 1012-2, 1012-1, 1012-0 ss__ |
Tigure 44. Engineer’s Notebook Shest

140

- o

File: \PHIL\TENP\MUPAC .NAP

1/17/92

Date:

PIN SIDE VIEW OF MUPAC/XBAR TEST BOARD

-—------.--.---.-.-.-.-.-
Lae Lag]

ws o - bl BT,] b4 o

— w o = ~8 X cm - & - -
..-._.....-.......-.-.-.-.............-.-........
r L O0O0AO0OO0OT» CQCOHIOOCOD .oooooog.oooooog.oooooog.ooooooo.

N T 0O00QCO0OO ‘A0AV0VOC ‘CO0QCOAOO TOO0O0O0OO0O ‘000 O0V00 ‘OCOCOOC -
-

. -
~N ¢+ 000000 'OCOCO0OO» -COOOCOO™ OO0 O0O0OD - COCOOCO® - COOCOCOO™ -
-

” T rO00VO0OO ‘0000000 VOO OOCOO ‘0000000 ‘0000000 0000000 -
.

. - - -~ o
M\‘vloooooooooooooooooooo
00000000 DCOCOOOOOOC O
-oooooooooooooooooooo
‘O 00O OO OB ONOG COO0OO

0000000 O® ——a

o] ©

HOOOO0OO0OOOO

(- K- X-X-J = - J—ll L A-X-X-1

[_A-X-R-2 J - -X-X-1) .
M"Nlaoooo L K- -¥-J LA AX-X-X-X-X-X lﬂ

MOOO [X-X-W-2 3 - P -

DO OO b - K- X-] -

- A-N-1 J (- 4 L X-L-N-¥%-1 MOOOOOOOOT -

- X-X-N-J m L A-K-X-1 .
(E-R-N-T 1 J *=xPOOCOO o .
ul..loooo OO O™ -] © o l”
TOO O = - RN - N-J (-4 o o .

L K- - -] OO o o (-2
- R-X-1 _J - G——a (-2 -N-N-1 [-J < -
‘00 COOCHOMOB OGO ROWP OO0 o L-4 -
*000000CO0OORCOOOOCOCOOCOOO0 [-J © -
ctO000OC000000C0O00CO00O0CO [-J o - .
T——— 000000000 (-] (-4 o . . o
- o - X-X-1 o -] (- - I',.“
. - = = » .
o *x =
L - -X-X-X-F] w v
ac o 1
t © a
QX.a mw ”» o P
- e
‘9-' L A-A-X-R-X-N-X_F-1)
.......... WOOOOOOOO ™ .

. —’P‘L - ‘— :
T W®OoOQCOCOOBOBO M
L T T T T S T T SN L I I O A I
w wy - o o~ w -3

-e o~ o~ L] o~ ~

39 -
40 -

1‘11111111222222222233333

MOPAC Test Board

'1‘\‘-:. 45,

141

<~ ¥E€E<CH4HAW IV ZIr"CIOMMMUOW?DD

B0 12|01 |-2]-2[-31-2[-3[-2[-3 [-3]-2]-3
.E.V[I SELIR|SELIIPSEL JSELI]ISELIISELY] D) Dl | g2 | D2 |sELe]stLe lISVUI PS[L SELIISELI| 14 | Q4 | Q4
-21-3}-2112]-2]|-3|-31-0] -1 -g] -l ~0|-1}-3}|-2|-3{~2]|-2]-0}] ~1
[D12{1012|siLefwvi| I 13 jSeLt| O1 0) |02 | D2 |seL2]sELe] I3 1 03103 |SELY] 14 | D4 | Q4
-0 -1 1 =31 -0 = H -4 -1 ! -2 2 e ~}|-2]|-0] ~1}=~3}] - 4 4
[012[1012IPSEL |SELI2] 11 11 |PSEL {NSWIN} 12 12 mPS[L 13 13 1 03 | O3 |SELI] 14 {PSEL|nsvl
o] -11-2]-3[1 -0 -3) 3 s [-0]-21-3
st |scousend secn wsvin] S ova [YEC| 12 [ONB] 12 |9NP] 13 VCC v | ONP fswen 14 [scialsers
2131 5 |-0] 1
10111011 [| V€€ NODE | cven|sELa|sEL s
0[-1 |1 21-3]5
1011} 1011 |sven} S4B GNDI 1 | 15 |

ST 1-2]-3
s |sELm | seuse| G s t1slos | os
AEIED
st s | secet seuas VCCliosri | os | os
O l-2]-3
RDB3 |RDB4 |RDES| VCC _[_ P E W cua | isl
() ~2{-3| -0
RDBo|RDBI |RDB2| SMI \/I 0] I Il Pt
6 -0l
1 256 PIN PGA [l
6 [-2]-3
R R
pa0|RDAI |RDAZ] SMO annfee | o | oo
6 | -0 -1
R
24| vras| neos|vee el | ae | oo
1| -2]-3
wRBO|wRBI| vR2 | VRE3 vee
CROSSBAR [sihile:
WRA4 | WA - - Iy
VRAS) VM| GND sceeloven| 17 | 17
0| -1
WRAD | WRA}

. wRAZ| vRA3 ool 1l
= R =3 m =) =3 = 8| 37 -2(-3
014 | 04 [psey [SELI| OND|SEI|VEC Jpgp |ONDop] GND fop, o VCC) py 5| SNB losry |srualpser| 07 | 07
-0 -i 14 -0l -11-2{-37110 10 -0} -2 9 9 -3 -2 8 =1(-21-0] -1
014 | 014 joevats | SELIJSELM g o) spy 10 |ovans |msven|secs]seus]pser v] 19 [seLa|mven)secstiseizl o7 | o7
2313 |-2|-3|a]-2[-3[-2l-al-2]3]9|-2a]l-2[31-01-21-3
o3 ma3 lesedsun)seafsoue) oo foie | 1o | el 09 | 0o Jwves] 19 Jseie) oe | o8 szl 18 | 18
O[-1[13[-0]-1]0]-0]-1]-01-1]-0]<11-0]-11-0 -o T8 -0 -1
03|03 fovn fseusfsaus]seuof oio [oo | o | no | 09 | as | 19 | 19 [seie o8 |evin] 18 | 18

1234567891011 181314151617181980

Figure 46.

Crossbar Pinout

142

< g CcCHADA TV ZIMrRerIToOommTMouOw>

— e I

3.2.9 CPH Microsequencer

As with many of the other "glue 1logic" functions, a microprogram
sequencer chip fast enough for the EVA architecture was not available in 1990.
A sequencer that can also support relative addressing and interrupts was
required. Several are available now but they remain too slow. Available
sequencers that can handle the high speed don't support interrupts or the
necessary addressing modes. One solution was to build the sequencer out of
high speed PALS and logic chips. An architecture that could be built from
available parts was designed. The problem with this approach is that over 50
chips are required. A few components could be added to one of the simple
sequencer chips to support the required addressing modes. This would reduce
the part count but the combined delay would be too great to meet the high
speed requirement. Fortunately, IDT developed a suitable part by 1991.

The CPH Microprogram Sequencer (CPH-MS) is designed to perform its
function in a 50 nsec maximum cycle time. Although the timing analysis 1is not
complete, a preliminary analysis of the critical timing paths, those paths
which pass through the slowest and/or greatest number of components seem to
meet the timing criteria. A microinstruction set that has been selected is:

INITIALIZATION

Load Loop Counter 16-bit count

Load Stack Pointer 10-bit address

Load Subroutine RAM Pointer 10-bit address

Load Subroutine RAM 16-bit data
IMMEDIATE

Jump Immediate 16-bit address

Jump Immediate Conditional 16-bit address

Loop Immediate 16-bit address
RELATIVE

Jump Relative 16-bit relative address

Jump Relative Conditional 16-bit relative address

Loop Relative 16-bit relative address
INDEXED

Call 10-bit index

Call Conditiocnal 10-bit index
INTERRUPTS

Set Interrupt Mask 8-bit data

Reset Interrupt 8-bit data
OTHER

Ro Operation no data

Return no data

Return Conditional no data

Push no data

Pop no data

The method of using indexed subroutine calls allows each software module
to be assembled, linked, and located at a base address of 0000h. The modules
may then be loaded into program memory and called by their index number. Each
call accesses the subroutine RAM by index number, and the subroutine RAM then
loads the program counter with the address corresponding to the physical
location of the module. Care must be taken when programming the modules not
to use immediate instructions. Implementing the interrupt vector table into

143

v

the same RAM as the subroutine indices, and separate from the stack RAM,
provides for the simultaneous access of both banks of RAM during a Call
instruction. This allows the present address in the program counter to be
pushed onto stack at the same time that the new ’call’ address is presented to
the program counter for a 50 nsec single cycle instruction. By placing the
interrupt table in the subroutine RAM, the same single cycle instruction may
push the program counter onto the stack upon detection of a hardware
interrupt. This also simplifies hardware design, since the latches necessary
to hold the RAM address while loading in data need not be present for the
stack RAM.

The following features are supported:

A 2-to-1 MUX allows the immediate/relative address to come from a source
external to the microsequencer. The stack and subroutine RAM is 4kx16 in
size. An additional output MUX and a tri-state buffer were added to create
two separate buses, one dedicated to the microsequencer and the second drives
the external RAM. This helps guarantee that the tight timing requirements of
the microsequencer won’t be compromised.

Several restrictions on instruction sequences have been eliminated by
designing the stack pointer out of PALs rather than discrete up/down counters.
Prior to the change, CALL and PUSH type instructions which increment the stack
after writing to it conflicted with RET instructions which increment the stack
before reading from it. The solution required that a 40 MHz clock be brought
in and logic added to compare the previous instruction to its successor and
decide at each 20 MHz clock whether or not to increment or decrement for the
CALL, PUSH, and RET type instructioms. For POP, LS, TWBI, and TWBR
instructions where the data is merely discarded from the stack, this is done
using the 40 MHz clock at mid-instruction.

The full instruction set now follows. Since the instructions are
'microcoded’ using PALs, and the PALs have many product terms remaining,
additional instructions may have to be added as required without changing any
hardware.

NOTE: In the following description /CNT0 refers to the loop counter’s
terminal count which goes low upon reaching zero, and /COND is a condition bit
which indicates a true condition when low.

INSTRUCTION SET

NOP No Operation

LDLC Load Loop Counter

LDSP Load Stack Pointer

LDSRP Load Subroutine RAM Pointer
LDSUBR Load Subroutine RAM

SIM Set Interrupt Mask

RIM Reset Interrupt Mask

RINT Reset Interrupt

J1 Jump Immediate
JIC Jump Immediate Conditional
JR Jump Relative

144

JRC Jump Relative Conditionally
LI Loop Immediate

LR Loop Relative

LS Loop Stack

TWBI Three-Way Branch Immediate
TWBR Three-Way Branch Relative

e

CALL Call
i CALLC Call Conditional
’ RET Return

RETC Return Conditional

PUSH Push

PUSHC Push Conditionally

PLDLC Push and Load Loop Counter

PLDLCC Push and Load Loop Counter Conditionally

POP Pop (Discard Top of Stack)

POPC Pop Conditionally (Discard Top of Stack)
EL Enable Interrupts

DI Disable Interrupts

When a data field of less than 16-bits is specified, the data is to be
right justified into the lowest bits possible. For example, an 8-bit number
AS5h will become 00ASh in the 16-bit data field.

Mnemonic OpCode Data Description

NOP 07Fh -~ Does nothing but consume time.
The next address is the program
counter + 1.

LDLC 07Eh 16-bits Load loop counter with the data
appearing in the data field.
The next address is the program
counter + 1.

LDSP 07Dh 12-bits Load stack pointer with the data
appearing in the data field.
The next address is the program
counter + 1.

LDSRP 07Ch 16-bits Load subroutine RAM address
pointer with the data appearing
in the data field. The next
address is the program counter
+ 1.

LDSUBR 07Bh 16-bits Write the data to subroutine/
interrupt RAM location pointed
to by the subroutine address
pointer last loaded using the

! LDSRP instruction. The next

address is the program counter
+ 1.

T et

SIM 07Ah 8-bits Set interrupt masks indicated in

| s

the data field. Each bit in the
data field corresponds to one
interrupt. The least significant
bit corresponds to interrupt 0O
(/INTO) which has the lowest
priority, up through the most
significant bit for interrupt 7
(/INT7) which has the highest
priority. Wherever a bit is set
to one in the data field the
corresponding mask will be set.
The next address is the program
counter + l.

RIM 079h 8-bits Resets interrupt masks indicated
in the data field. Each bit in
the data field corresponds to ome
interrupt. The least significant
bit corresponds to interrupt 0
(/INTO) which has the lowest
priority, up through the most
significant bit for interrupt 7
(/INT7) which has the highest
priority. Wherever a bit is set
to one in the data field the
corresponding mask will be reset.
The next address is the program
counter + 1.

RINT 078h 8-bits Resets the interrupts indicated
in the data field. Each bit in
the data field corresponds to one
interrupt. The least significant
bit corresponds to interrupt 0
(/INTO) which has the lowest
priority, up through the most
significant bit for interrupt 7
(/INT7) which has the highest
priority. Wherever a bit is set
to one in the data field the
corresponding interrupt will be
reset. The next address is the
program counter + .

JI 077h 16-bits Jump to the address specified in
the data field.

JIC 076h 16-bits Jump to the address specified in
the data field only if the /COND
signal is low, else the next
address is the program counter
+ 1.

JR 075h 16-bits Jump to the address created by

146

o

Ea =

s

JRC 074h 16-bits

LI 073h 16-bits

LR 072h 16-bits

LS 071h -

TWBI 070h 16-bits

adding the program counter to the
data field.

Jump to the address created by
adding the program counter to the
data field only if the /COND
signal is low, else the next
address is the program counter

+ 1.

If /CNTO is high, indicating that
the loop counter has not yet
reached 0, then jump to the
address specified in the data
field.

If /CNTO is low the next address
is the program counter + 1.

If /CNTO is high, indicating that
the loop counter has not yet
reached 0, then jump to the
address created by adding the
program counter to the data field.

1f /CNTO is low the next address
is the program counter + 1.

If /CNTO is high, indicating that
the loop counter has not yet
reached 0, then jump to the
add-ess located on the top of the
stack. This address is to remain
on the top of the stack after the

Jump.

If /CNTO is low, then the jump
address on the top of the stack is
discarded and the next address is
the program counter + 1.

If /CNTO is high, indicating that
the loop counter has not yet
reached 0, and /COND is high
indicating a false condition, then
Jump to the address located on the
top of the stack.

If /CNTO is low and /COND is high
then jump to the address specified

in the data field. The address on
the top of the stack is discarded.

If /COND is low then the next

147

address is the program counter + 1
and the address appearing on top
of the stack is discarded.

TWBR O06Fh 16-bits If /CNTO is high, indicating that
the loop counter has not yet
reached 0, and /COND is high
indicating a false condition, then
jump to the address located on the
top of the stack.

1f /CNTO is low and /COND is high
then jump to the address created
by adding the program counter to
the data field. The address on
the top of the stack is discarded.

If /COND is low then the next
address is the program counter + 1
and the address appearing on top
of the stack is discarded.

CALL O06Eh 12-bits The current program counter is
incremented and stored onto the
top of the stack. The program
then jumps to the address
appearing in the subroutine/
interrupt RAM at the SUBRAM
address given in the data field.

CALLC 06Dh 16-bits If /COND is low then the current
program counter is incremented and
stored onto the top of the stack.
The program then jumps to the
address appearing in the
subroutine/interrupt RAM at the
SUBRAM address given in the data
field.

If /COND 1is high then the next
address is the program counter

+ 1.
RET 06Ch -- Jump to the address appearing on
the top of the stack.
RETC 06Bh -- If /COND is low then jump to the
address appearing on the top of the .
stack.

If /COND is high then the next
address is the program counter + 1.

PUSH 06Ah - Store the program counter + 1 on

148 |

AARlE

———

N meRe

the top of the stack. The next
address is the program counter + 1.

PUSHC 06%9h -- If /COND is low then store the
program counter + 1 on the top of
the stack. The next address is the
program counter + 1.

PLDLC 068h 16-bits Store the program counter + 1 on
the top of the stack. Load loop
counter with the data appearing in
the data field. The next address
is the program counter + l.

PLDLCC 067h 16-bits Store the program counter + 1 on
the top of the stack. NOTE: The
preceding push was not conditional.
If /COND is low, then load the loop
counter with the data appearing in
the data field. The next address
is the program counter + 1.

POP 066h -- Discard the data appearing on the
top of the stack. The next
instruction is the program counter
+ 1.

POPC 065h -- If /COND is low then discard the
data appearing on the top of the
stack. The next instruction is the
program counter + l.

EI 064h -- Enable future and pending unmasked
interrupts to be serviced. The
next instruction is the program
counter + l.

DI 063h -- Disable all interrupts from being
serviced. The next instruction is
the program counter + 1.

Microinstruction productions for the CPH need to account for the timing
delays in the crossbar, both in the processor and in the address generator.
When selecting a pass through transfer or "in to out”™ in any direction, clock
1 selects the path (SEL). Clock 2 latches the input data. At Clock 4 the
output data is available to the destination. To write data into the register
file, Clock 1 selects the path (SEL), the register address, and the write
enable signal (WRENA). At Clock 2 the data must be available to the crossbar
for writing into the register. To read from a register, Clock 1 selects the
port and the register address. At Clock 3, the data is available to the
destination. (mode 1 operation only). The sample microprograms in the
appendix take these delays into account. They should be examined carefully.
Additional notes on microprogramming can be found in a later section.

149

For example, the IMMAD field or immediate address field is active in
both phases. From the machine definition file in the appendix, one sees that
the two ASSIGN statements are used. The first statement assigns physical bits
237 thru 339. The second statement assigns physical bits 621 thru 723. The
higher order bits are reserved for the first phase and the lower order bits
are reserved for the second phase. A particular phase at any clock cycle is
selected transparent to the user. Clocking is done automatically.

3.2.10 Backplans

The CPH backplane depicted in Figure 47 entitled "Backplane” is a custom
backplane with the footprint of a 9U VME board. However, all CPH boards
require many more backplane pins then can be provided on the Pl, P2, and P3
connectors of a standard VME bus. Special connectors from AMP were designed
into the custom backplane. The plane must also have pinouts on the processor
board which are different than those on the address generator and cache memory
boards because the processor board can be cascaded with other processor
boards. Each processor board must then generate different addresses to cache.
The connector lists for the processor, cache, and address generator boards
follow in Figures 48 and 49.

The physical configuration of the backplane consists of 9 slots and
three left open for future expansion. Each connector will be placed on a

0.800 inch center to center spacing. The slot assignments are listed next.

Backplane Slot Assignment

Slot Number System Assignment

1 1 IOP

2 1 PROCESSOR

3 1 EMPTY

4 1 ADDR

5 1 EMPTY

6 1 CACHE MEMORY
7 2 PROCESSOR

8 2 EMPTY

9 2 CACHE MEMORY

Slots 3, 5, and 8 are empty to allow the tall boards to have clearance.

This backplane supports two CPH systems. The two systems share a common
system clock, microsequencer address signals, and power, but all data and
memory address buses are isolated between slots 6 and 7. This allows each
system to access independent memory and data, and even to execute different
microcode with the constraints that both systems have the same microsequencer
generating a common program address.

The clock circuitry for the backplane remains to be designed. The
initial design should support all phases of the CPH clock and should support
single stepping. The single stepping feature can be installed on the
frontplane with a debounce switch and as an alternating TTL signal from the
IOP. The ECL-to-TTL conversion should be done on the backplane.

150

0000 0000 0000 0000 o000 0000 900w veww
s < 3 3 » AN L - »_, * v p
7) e s ~ V]
o e A 3 ~ 27 8. b ¢ o any)
[NCACAN K] [[[[l] KA I} ¢ .
0000 0000 0000 0000 0000 0000 0000 0000
w7 At i e b b o> LKV Y > "R > ARY)
e — 4 $ v e 8§ »r ot i S, T >
v 4t b LRI 4 ¢ o ») »
ESTL] | ICACE #a9TBarH 121 oot adH - wheladn{ 112 12 B[' e
0000 9000 LX) 000 090 000 000 0000
o ¢ o, « & v ~4 ¢ ¢ »r LR, 3 e > ~ AN
a O d - b - a & o7 ~ 2 o « N »
7 o 0 3 » [R) o < -~y AN
LA 2 44 ¢ [29 []] ()] v
0000) 0000 0000 0000 9000 0000 0000
7 « i i - ~ a4 $ 3 s 2 <313 4 \ “ARY]
[N 3 b s s, 27 3 Ay » ~u AR
(A A2 N = 4t ¥ o < v < v
LN AN ¢ 8 3]] [K] [XN CR LA] 2 ,
0000 0000 0000 9000 0000 0000 0000 0000
7 <’ 4 1 3 [] e 2 ¥ T » < > SARYJ
7o - -~ ARy, 27 2 § 4 4 4 oy ~e > »
o 7 o - A o $ 3 o 4 & & o A é ¢ =N ARV
[NLACEN) [] e § 4 ¢ K [] X e d by 3 ARV
o co0o00 o o 0000 o o 0000 ° 0000 o 0000 o 0000 9 0000 ° 0000 °
.l\\ T I < I T = I I - > ™3 - - - = X ARV
9o s . - - - =N »
L — : 1 1 > 1 1 S 1 A A8 ¢ ot y
[AN] 2 44y [ra 283y e [) [} AvY
° coo0o0 o ° 0000 ° o 0000 o 0000 ° 0000 ° 0000 ° 0000 ° 0000 °
o000 o000 0coo0 0000 0000 0000 0000 o000
o 000 O0 o o [- 2= 22} [+ -] Q00O Q 0000 o oo o Qo o0 o Q000 Q Qo000 o
A @ H A — <1 i —ATFad 3 »HA 13, - $3, s 33 oA) ~AAYJ
o3 N [X3 T8 - ¢ 2 & - s o . 2 "N p
(N s —1 e ¢ 11 —+ 4 ¢ 4 o1 At 1 e 3 T 4 ¢ A1 8 ¢ o ARW
Y [TH TREEXEILL PHedselly [R X] e b é o TS [ELIE L 2 849 29N p
° 0000) o 0000 o) 0000 o 0000) 9000) 0000 || o 0000 ° 0000 ° 7
[N XA a 27 K - 4§ ¢ » - > N
(AT, 27 >y 4 ~ Y <4 ¢ ¢ »r r ~ y
(4 Q 27 = 4 a vl]
[N AN [[l $ 3, [[} * ARV
0000 0000 0000 0000 0000 0000 ©000 0000
[N - 2 43 » 4 43 0 & ¢ 3 o pZ 2 * %% »
[(\Cx4 > a b ép a s 2 ARV
(L4 - r 27 v 2 ~e %) »
a7y e o4y [[? T i) [l)] raayl °
0000 0000 0000 0000 0000 0000 0000 0000 [Y
(> - o - o 4 13 » s ~a AR Y} L 4
[N A4 <, o 27 va < - ~RANY
[2 v 4 — y
(LA AN WaAL DL [za il e i1l e L dl e P PMIVARY
3970cH 0000 o 0000 WEGFadH 000 ‘flTooo 000 000 000 9000
(4 *XEIC TSRV . o ¥ - e 3 3 ~AAW]
Nx A TR, TR AR]
(4 4 $ 3 ar 27 o L7 A - A 27 AR Y] i
o V¥ q p 8 4y [RK] [L K] [}) [3 [3 20>y
0000 0000 0000 0000 ©000 0000 0000 0000
o o > It » ¥ a1 2 33 o ALY/
(N2 . 7 2 A d s & ¢ ~8 27 AR
< A > =~ 2 - ¢ 4 & b o 2 ARV
LAY r 83 KK g ¢ TR KX} TR X KX FRARW
o000 Qoo 0000 0000 0000 Q000 0000 Q000
7 X 7 At i, e ! 4 ¥ 4 17 », - AR
7 - A7 3 3 o> 2 - < 7 < — <* v »
(N va o d] a L - v o % »
LAY e d &y CER) [) (] S ¢ K) [FARY]
[+ G oQCoO -] -] 00QO o (-] [~ -0 - -) -] 0000 o 0000 o QOO0 o 0000 [0000 o
[4 L L 3 T] . AT 3 T AT < 33 * % »
ooF N i] Xy . T AR
[4 1 1 « 3 A1 + RV e e T N } « 43 o - 2t ARV
(NN Y [g 3 ¥y KR [] [FARY
o 0000 ° ° 0000 o ° 0000 ° co0o0o0 o 0000 ° 0000 o vooo ° 0000 °
000C0O 0000 Q000 Qo0 0000 0000 -3 - -] (-0 - -

mre o TR ke T b ® Srna—— » [

gl

39%JaH

39%0cH

O]

o

H o
R o
°
©
H o
[
°
©
o
o
°
©

1y

N

\;0

N
ofe{ 0

/]

P

14

Nd

ol
ece
o-t
oHIT]

ole
OJ&.-*O
°

o

Y fin

(-]
-]

N

o

f

q4Y

o-‘\:
(-]

o

oh
©

(-]

(-]

[~
©

[dlote

|plis] O te 4%
pN sl

Ct

/]

444

¢

.

’
¢

© ey
©
©
L]
-]
ofe
°
©
°
°

ofefdiddlofeldld

ouy;ﬂoL

©

Sl

A4
ofe 3

o
[
o

A
A

oue

o

Ote
-]
oM
o
o
ole
©
o
L]

(llo

4

L

A
(4

oHof{e{ O
NG

o

[N

p

@000

-]
o
ol
°
Ofe
[
[}
ol
°

s

plote
3ot

(

A4

iAo

o

/]

%

(A

o

- K

o lefli
°
©
\on\:ﬁou\:\on tion \:oo\!
(blo
°
°
\o'\
akh4
°
°
(-]
(-]

o o d

.

P

Y

a7

{4

Pt

(AW

ol

Qo000
0000

0000

© ofelld
©co
oo
Oow\
co
oo
©co
O Cte
ool
oo
oo
oo
oo
© O
(-
oo
cowwN

©
O]
O]

obd
o
=o
o
o
H o
<
©
(-]
(-]
(-]

4

o &

\

.

N
ofeio
ol O

byl o

“ o

ol ot e

sfjefjej 0

%

o v d oy

s @

(A((aifh1 0

i
:

(AN

0000

oH]

o{J

ore

© | o] ol o4
Ofe

ofe

O |

ole

o H[Tl
=%

7

O |

VG

(Ao

o O |ejs{sfe{O
oo

[plote

2

add

Y
g

Y

s 7

offof{e1 O ol ofjefje1 O

ool a4 O | o

g
\
-

LAY

N

00090

o=
Ofe
Ofe
Ofe
O et
o-.hp

7

rlore
o 0 e
o O | o4
[dlo
o

ofleiofod

o

F
)

« 7

(Ml[A 080 foifd

3

A

LA AT

(-3

© |ofiefing|e] O |4 o

ole|i
oleliy
©
Ote
O
Ote
Otre
©

oo
\

O |ed
A
ol o
Lo-o

o v

R
y

\
\

7

oliojelo|efted

e
\
N
ol o
\
fad

LAY

:
:

o000

0'./
(-]

)
ol
°
o
ofe
©
ooibo

o v

o Q jofl oy
o
-

.

y
ARRAA
ofe4 O

by
\
\
\
N
\

o v 4

;
;

\

LNCACAN

W
£

0000

]
o
o
°
©

o
Ofe

N

Ote
o
Ot

o
o
y|ofe

g V& o

N
N
y

[

J
e
’

i

N
N
!

o ¥ &

:

N

AN

Qo090

O {efiefedie O
o el e
oty

N
[oteialihlbote
o«
o {efleflediey 0o
{0 |efollefled 0 jof of o]
on\\

|

ole
Ore
ofe
o |ef
{ O o
ofe
1 O | ol of
o telly
1011e
10 |ofl o
Ofps

i

J

THIS IS THE CONNECTOR LIST FOR THE PROCRSSOR BOARD OMLY. IT DIFFERS

FROM THE CONLST2.DOC LISTING. TEAT LISTS THE RDD GENERATOR AND
MEMORY COMNECTOR LIST. 'l'ﬂll CURRENT LIST FPOR THE PROCESSOR

DIFFERS BECAUSE WA 18 CAPABLB F CASCADING MULTIPLE PROCESSOR BOARDS.

HERCE, RACH BOARD MU ISOM'I.'ID FROM THE OTHER PROCESSOR BOARDS.
COWNECTOR MET LIST FOR SECTION Pl
PIN WET PIN NET PIN NET PIN NET
Al vce 1 vee c1 vee D1 vee
A2 DATAAILS 2 DATABI1S c2 DATAD15 D2 DATAEI1%
A3 . DATAAIL14 TABI1ld4 c3 DATAD14 [*&] DATARI14
AL 4 13 cé DATAD13 D4 DATARI13
A3 DATAAILZ 4 DATABI12 c5 DATAD12 D3 DATARI12
A5 GND € GND cé D& GWD
A7 DATAAILL DATABI1l €7 DATAD11 D7 DATAEIll
A8 DATAAILO 8 DATABI10 ch DATAD10 D8 DATARI10
A9 DATAAIS 9 DATABI9 c9 DATAD9 D9 DATAELS
Al0 DATAAL® 0 DATABIS c10 DATADS D10 DATARIS
Al GND 311 GND c11 GND D11 GND .
Al:] 7 312 DATABI?7 Cc12 DATAD7 D12 4
8 MmN B Mmoo mme pn b
4
AlS ATAAT 4 B15 TABI4 c1% D15 DATARI4
Al6 316 ND Cc16 D16 GND
Al7 DATAAI3J 7 DATABI3 c17 DATAD D17
Al8 DATAAI2 8 DATABI c18 Dle DATA
Al9 DATAAIL 319 DATABI1 Cc19 DATAD D19 DATAEI
A20 DATAAIO 320 ABI Cc20 DATA D20 DA’
A2 GND 21 oY D2 GND
A27 DATJ ' 22 DATABR1S Cc24 ATAC1S D212 DATAER15
A2 DATAAR14 3 TABR1 C ATAC14 D2 DATAER14
A2 DAT, 4 DATABR1)} [+ DATAC13 D2 DATAER13
A2S DATAAR1Z 25 DATABR12 C DATAC12 D2 DATAERR12
A2 anp 26 C26 GND D2¢ GND
A27 DATAAR11 27 DATABR11 [+ DATACL11 D2 DATARR11
A2 DATAARLO 28 DATABRI1O C DATAC10 D2 DATAER1
A2 9 29 DATABR! c29 DATACY D2 DATARRY
kg) DATAARS gg DA g) M‘T,IC. gg DATAERS
Al DATAAR? 32 DATABR?7 [DATAC? D3 DATAER7
Al 33 DATAB [+ DATACE D3 DATARRG
A3 34 DATABRS c] n3 DATARRS
A3 DATAARS 35 DATABR¢ [< DATACY D3 DATARR4
A3 36 GND [D D3¢ GND
A3 DATAARI 37 DATABRJ c DATAC3 D37 DATAER]
A3 DATAAR2 338 DATABR2 C 2 Di8 DATAER2
A3 DATAAR1 339 DATABR1 c39 1 D3% DATAER1
Ad DATAARO 340 DATABRO C40 DATACO D40 DATAERO
Ad) 341 C4 D4 GND
ALl vece 342 vee (< ¥ vece D4 vee
CONNECTOR WET LIST FOR SECTION P2
PIN NET PIN NET PIN NET PIN NET
Al Bl cl D vee
ADDAC3S B2 ADDAC23 c2 ADDAC11 2 CLK1
A3 ADDAC34 B3 ADDAC22 Cc3 ADDAC10 D3 CLK3
A4 ADDACI) B4 ADDAC21 cé ADDAC9 D¢ CLK2
ADDAC32 BS ADDAC20 [+ AD! 8 Dt CLKé
6 cé GND D GuD
A7 ADDAC31 A ADDAC c7 ADDAC?7 D7 CLK
ADDACA0 4 ADDAC18 ce ADDACE D8 /CLK
A9 ADDAC29) c9 ADDACS D9 /RRSET
Al0 ADDAC28 0 ADDAC16 =31 ADDACS D10 /COoMD
Al 1 QND [GND D11 GND
Al ADDAC27 2 ADDAC1S C14 ADDACY D12 ADDMO
4 B oS o4 B o2
AlS ADDAC24 -3 ADDAC12 (3% ADDACO D1% M
AL 6 anD C1é GND D16 GND
Al ADDBD]S 7 ADDBD23 [ADDED1 D17 mnug
Al DBD 4] ADDBD22 c18 ADDBD10 D18 ADDM!
Al ADDBD33 9 ADDBED21 c19 ADDBDY D1g ADDM6
A2(DBD32 320 ADDBD20 c20 ADDBDS D20 ADDM7
A2 321 GND C4 GnD D21 Gup
A2 ADDBD31 322 ADDBD19 [ADDBD? D22 ADDMS
A2 ADDBD30 823 ADDBD186 [ADDBD6 D23 ADDM9
A2 ADDBD29 B24 ADDBD17 C24 ADDBDS D24 ADDM10
A2 ADDBD28 B25 ADDBD16 C25 ADDBD4 D25 ADDM11
A2 826 C2¢ GND D26
A2 ADDBD27 B27 ADDBD1S C3 ADDBD3 D27 ADDM12
A2 DBD26 P28 ADDBD14 c20 ADDBD2 D28 ADDM13
A29 ADDBD2S 329 ADDBD13 c29 ADDBD1 D29 ADDM14
:33 ADDBRD2¢ g DBD1 g) ADDBDO g g 5
Al DATAARIS 32 DATABR15 [+ DATAC35 D32 DATARRIS
A3 TAARI4 3 R34 [+ 34 D13 DATARR14
A3 'AAR]3 4 DATABR]3 [DATACI) D34 DATARR1)
A3 DATAAR32 5 DATABR32 c DATAC32 D15 D. 2
A3 6 Ca¢ QD Pis
A3 TAALIS 7 DATABI 35 [+ DATAD3S a7 135
LY DATAAI 34 338 DATABI 34 C DATAD oae DATARI 34
Al39 DATAAL 339 DATABI 3]} (4 DATAD D319 133
A40 DATAAI3Z2 A40 132 C4 34 40 32
Al [] b1 C4 QnD D41
M vee 342 vee Cé vee 2 vee

CONNECTOR NET LIST FOR SRCTION P13

PIN T PIN NET PIN HET PIN uET
Al 1 [vec Dl vee
A2 DATAAI3) 2 C2 31 D2 DATABI31
Al DATAAIYO 3 DATARI 0 €3 DATAD3IO D3 DATARI IO
Al DATAAI2S 4 C4 DATADZ29 D4 DATARI29
AS DATAAIZ2S 3 DATABI2S [« DATAD28 DS DATARIZS
A6 GND 6 Cé GND D6 QuD
A7 DAT, 27 7 27 €7 DATAD27 D? DATARI27
A8 DATAAI26 € DATABI26 Ct DATAD26 D8 DATARI26
A9 DATAAI2S TARI2S C DATAD2S 9 DATARI25
ALl 4] 24 c10 DATAD24 D10 DATABI24
Al Q8D 1 [4 GND D11 QD
Ald DATAAI2)} 2 DATABI2) [DATAD23 D12 DATARIZ)
Al3 DATAAI22 3 DATABI22 C13 DATAD22 D13 DATARI22
Al DATAAI21 4 121 Cl4 DATAD21 D14 DATARI21
Al DATAAIZ20] DATABI20 c DATAD20 p1s DATARI20
Alf QND & C1f GND D16 GND
Al DATAAILS 7 DATABI® €17 DATAD D17 DATARI19
Al DATAAILS L8 DATABI18 [DATAD D18 DATARI1S
Al9 DATAAIY? 9 DATABI17 C19 DATAD D1% DATAEIl?
A2 DATAAILE 0 DATABI16 c20 DATAD16 D20 DATARILE
A2 GND 1 anp (¢ and D2 Q¥D
224 mm:a B g DATABRI1 C DATAC31 D23 DATAER31
A2 3 DATABR1O [DATACIO D23l DATAERIO
A2 DATAAR2S r TABR29 C24 29 D2 DATARR29
A2 () DATABR2S [1] D2 DATAER2S
38 GND [C26 D2¢ GND
DATAAR27 ¥ DATABR27 €27 DATAC27? D2 DATAER27
A28 DATAAR26 DATABR26 c2e 6 D2 DATAER26
A29 DATAAR2S 4 DATABR2S C2S DATAC2S D29 DATAER2S
A0 DATAAR24 DATABR24 c30 DATAC24 D3 DATAER24
A) GND 3 GND C3 GND Dl
Al DATAAR23 DATABR23 €34 DATAC23 D13 DATAER23
A3 DATAAR22 DATABR22 C3 2 D3 DATARR22
Ad DATAAR21 4 DATABR21 CI4 1 D3 DATARR21
A3 DATAAR20 34 DATABR20 €35 DATAC20 D3 DATARR20
AL GND € GND C13E D3¢ GND
Al DATAARLS DATABR19 €37 DATAC19 D7 DATARR19
A3 DATAAR1LS DATABR1S [DATAC1S D3 DATARR1S
Ad DATAAR]? DATABR17 c DATAC1? D3 DATAER17
Al DATAARLG 40 DATARR1S Cé DATAC16 D4 DATARR1S
Ad oD b4 GND C4 oND Dé [~]
M vee)4 vee C4 vee D44 vce
Figure 48. Processor Comnnsctor List Continued

153

PARTIAL LIST FOR BACKPLANE BITS
ADDRESS PORT E AND SOME CONTROL LINRS MUST BE ADDED WHEN TIMING
DREBIGN COMPLETED POR THR HSIO BUS

CTOR NET LIST POR SECTION Pl
NET PIN WET

PIN NET PIN PIN NET

A vee vce ¢ vee D1 vee

Al DATAAILS é DATABI1S c% DATAD1S D DATARI1S

Al DATAAIL1¢ 3 DATABI14 c3 DATADL D DATARI 1 4

Al DATAAIL) 4 13 ce DATAD13 D4 DATARI1)

A DATAAI12 [DATABI12 c5 DATAD12 DS DATAR

Af I cé GND D6 GND

A DATAAILL 7 DATABI11 c? DATAD11 D7 DATARI11

A DATAAI10 DATABI1G ce DATAD10 D8 DATAEI10

A9 DATAAIY] DATABIS DATADS D9 DATARIS

Al0 DATAAIS 0 DATABIS c10 DATADS D10 DATARIS

All GRD 1 GND c11 GND D11 GND

Al12 DATAAL? 2 DATARI? c12 DATAD7 D12 DATARI?

All DATAAIG 3 DATABI6 €13 D13 6

Al4 DATAAIS 4 DATABI5 Ccl4 DATADS D14 DATAEIS

Al5 ATAAL & 5 DATABI4 c15 DATAD4 D15 4

Al6 B16 GND Ccl6 GND D16 GND

A7 DATAA B17 DATAB €17 DATAD D17 DATAEI

Al8 DATAAIZ B18 DATABI c18 DATADZ D18 DATAE

Al9 DATAAI B19 DATABI1 c19 DATAD] D19 DATAR

A20 DATAAID B20 D. 10 c20 DATADC D20 DATAEIO

A21 GND B21 c21 GND D2

A22 DA £ B22 15 c22 TAC1° D23 15

A23 DAT, 4 B23 DATABR14 €23 v r D2 DATAER14

A24 DAT: 3 B24 TABR13 c24 DATAC] D24 13

A25 DAT 2 B25 DATABR12 c25 DATAC1Z D25 2

A26 GND B26 c2 D26

A27 DATAAR1 1 B27 R11 c27 DATAC11 b2 DATAER11

A28 DATAAR1O B28 DATABR10 c28 1 D2 DATAER10

A29 DATAARY B29 ABR9 €29 DATACS D2 DATAERS

A30 DATAARS B30 DATABRS c30 8 D3 DATAERS

A3l B31 c31 GND D3 GND

A g DATAAR? B32 DATABR? c32 DATAC? D3 DATAER?

Al DATAARG B33 R6 ¢33 DATACE D3 DATAERG

A.g TAARS n.g DATABRS c34 DATACS D34

A DATAAR¢ B Ré c3s DATACS D3s DATAERS

A6 B36 QND c36 QND Da¢

A7 DATAAR3 837 DATABR3 ¢37 DATAC3 D3 DATARRI

A38 DATAAR2 B38 DATABR2 cae DATAC2 D38

A9 DATAARL B39 DATABR1 c39 DATAC1 D3 DATAER1

AL0 DATAARO B4O DATABRO c4o DATACO D4 DATAERO

Adl QND B4l QuD cél GND D4 GND

A2 vee B42 vee ce2 vee D& vee
CONNECTOR NET LIST FOR S8ECTION P2

PIN NRT PIN NET PIN NET PIN NRT

Al vee Bl vee c1 vee D vee

A2 B2 c2 ADDAC11 D3 CLK1

Al B3 cl ADDAC10 D3 CLK3

Al B4 cd ADDACSY D4 CLK2

A BS cs ADDACS D CLK4

AG - 36 - Cc6 GND D GND

A 3 c? ADDAC? D7 CLK

Af [ce ADDACS D /CLK

A < C§ ADDACS D9 /REBSET

Al0 0 c10 ADDAC4Y D10 /COND

Al1 arD c D GND

A12 ADDAC1S €13 ADDAC3 D14 ADDMO

Al3 DAC1 c ADDAC2 D ADDM1

Ale 4 ADDAC13 c ADDAC1 D14

AlS ADDAC12 c ADDACO D ADDM3

Al6 anp £ ¢ D1¢

A7 €17 ADDBD11 D11 ADDM4

Alg C ADDBD10 D DM5

Al9 [ADDBD9 D19 ADDMS

A20 ¢ DBDS D20 ADDM?7

A21 oND 2 QND c D GND

A22 2 C24 ADDBD7 D23 ADDMS

A23 Y c ADDBD6 D ADDM9

A24 C24 5 D24 ADDM10

A28 c ADDBD4& D, ADDM11

A26 QWD € C26 D2¢ GND

A27 ADDBD15 [ADDBD3 D2} 12

A28 B ADDBD14 [4 ADDBD2 D28 ADDM13

A29 29 DBD13 c29 ADDAD1 D29 ADDM14

tg : D ADDBD12 g) ADDBDO g D ADDM15

A32 DATAAR]® 334 DATABR3S €32 DATAC3S D DATAER3S

A3l DATAAR 4 k DATABR34 €31 DATAC34 D 4

Ad4 DATAAR) 4 DATABR1) c DATAC3 3 D DATAER1]

:. 2 DATAARI]? 3 DAT) g DA 2 g 2

A7 DATAAI3S y DATABIJS c3 DATAD3S D3 DATARI3S

Al8 DATAAIJS DATABI 4 c3 DATAD34 D DATARI

A39 DATAAI33 C3 3 D3 DATARI33

m 0 DATAAII2 1) g:l DATAD32 g: DATARII2

u% vee ? vee c4e vee D4 vee

Figure 49. c.ch.l_hddmc Gensrator Connector Lists

154

CONNRCTOR NET LIST FOR SECTION P3

PIN KET PIN T PIN NET PIN WET
Al vece Bl vCC [+ § vee D1 vCC
A2 FAAI 31 B2 DATAB c2 DATAD31 D2
30 B3 DATAB1 30 c3 DATAD30 D3 DATARY 30
Ad 29 B4 129 c4 DATAD29 D4 DATAEI
DATAAIZ® 85 DATABI2® g DATAD28 D5 DATARI28
a7 DATAAX27 " DATABI27 c7 DATAD27 D7 DATARI27
DATAAI26 B8 DATABI26 ce DATAD26 8 DATABI26
A 25 B9 DATABI 25 c9 DATAD2S 9 DATARI2S
AL DATAAIZ¢) DATABI2¢ €10 DATAD24¢ D10 DATARI2¢
Al GXD C11 GND D11 GND
Al DATAAI2) DATABI23 €12 DATAD2) P12 DATAEI23
Al DA’ 22 ABI22 c13 DATAD22 D11 DATARI22
Al DATAAIZ] 21 ¢1¢ DATAD21 D14 DATAEI21
Al DATAAI2G DATABI20 €15 DATAD20 D15 DATARI20
Al anD ! ci6 GND D16 anD
Al DATAAI19 TABI19 ¢17 DATAD19 P17 DATARI19
Al8 DATAAILNS 3 DATARI1® cie DATAD18 D18 DATAEI18
Al 7] 17 c19 DATAD17 D19 DATABI1?
A2 DATAAIL6 320 DATABI16 €20 DATAD16 D20 DATARI16
A2 GND GND c2]1 p21 GND
r DATAAR31 DATABR31 c22 DATAC31 D22 DATAER]1
A2 DATAAR3D DATABR c23 p23
A2 DATAAR29 4 DATABR29 C24 DATAC29 D24 DATAER29
A2 DATAAR28 DATABR28 €25 DATAC28 D25 DATARR28
A2¢ axD 26 c26 D26
A2 DATAAR27? y DATABR27? c27 DATAC27 D27 DATARR27
A28 DATAAR26 28 [c28 DAT 6 D28 DATAER26
A29 DATAAR2S 1 5 c29 DATAC25 029 DATAERR2S
A30 DATAAR24) DATABR24 €30 DATAC24 D30 DATAER24
A3] QND ca1 GND D3 GND
AdJ DATAAR23 4 [} DAd DATAERR23
A3 DATAAR22 DATABR22 €33 DATAC2; D3 DATAER22
Ad DATAARZ) DATABR21 34 DATAC. X} DATAER21
A3 DATAAR2D DATABR20 638 DATAC2(D3 DATARR20
A3 £ anp C36 D€ QND
Ad DATAAR19 37 DATABR19 ¢37 DATAC19 D3’ DATARR19
A0 DATAARLG 40 DATABR16 €a0 TAC16 D4
Al GuD 7) cel D4 ond
Ax vee 142 vee (21 vee D4 vee

FPigure 49. Cache/Address Gensrator Connector Lists Continued

155

156

4.0 Microprogramming the CPH

Microprogramming the CPH is done with the microassembler provided using
MicroAsm. Here, a user would develop an assembly level program with the
MicroAsm assembler syntax. A predefined description of the CPH has been
entered into the Genasm files. A typical production of the microcode for the
assembly level application program uses the following command line.

Microasm mulm.asm -cph -f

This command line uses the predefined machine definition tables of the cph
file and generates the microcode for the mulm.asm assembly level code. Output
will be in a file labeled as "mulm.ldf".

4.1 Theory of Operation

Generating microprograms for the CPH requires the MICROASM retargetable
microassembler. There are three programs entitled, GENASM, MICROASM, and MPP.
These three executable files should be in the current directory you are
writing the assembly level programs. As an example, the following sequence of
steps are necessary to produce a binary file for the machine. That output
file will have the root name of your source and the extension, "LDF".

4.1.1 Sequence of Steps
To create and assemble a program, two steps are necessary as follows:

1. Create your assembly level program with any text editor.
Save as an ASCII file only.

2. Keystroke the following command line
MICROASM <YOUR FILE NAME.ASM> -tCPH -f

This is the entire sequence. This example uses the already developed
tables for the CPH which should be in your directory. The "-f" string tells
MicroAsm to produce a binary output PROM file with the root name of your
assembly program.

4.1.1.1 An Exsmple

On the disk provided are 18 files, including Microasm.exe, Genasm.exe,
MPP.exe, CPH.FIX, MULM.ASM, MULM.LDF, DAFY.FIX, and DAFY.LDF. To produce a
PROM readable file in binary from the MULM.ASM assembly program, type the
following:

MICROASM MULM.ASM -tCPH -f

This command line will assemble the program called MULM.ASM, using the machine
description found in the CPH.FIX files and produce MULM.LDF. After completing
the steps, examine the MULM.LDF file. It should have four microinmstructions
of 768 bits width. The source program, MULM.ASM, is found in the appendix
along with the MULM.LDF and CPH.FIX machine description file. Verify that the
micro orders in the LDF file agree with your syntax in MULM.ASM.

157

4.1.1.2 The LD¥ files

LDF files are produced by appending in the Microasm command line the
symbols "-f"., The output file will have the same root name as the ASM file
but will have the LDF extension. This file is used to produce the PROM words.
This LDF file can be viewed to verify the bits in each microorder selected by
your assembly program. For example, an AAA.LDF. file was created from the
AAA.ASM file in your example section. It is two microinstructions long. The
very first bit in the upper left corner is physical bit 768. The lower
rightmost bit is physical bit 1. The most significant 384 bits represent
phase 1 microorders in each microinstruction while the least 384 bits
represent the phase 0 microorders. To locate individual fields requires you
to compare the MI format drawing with the LDF file. Be careful. Some of the
fields are spread across isolated physical bits. The immediate address field
is one. ADDRESS RAMl is another. There is potential for confusion in several
areas. These are clarified in the sections below.

4.1.2.1 Default Bitse

In order to avoid having to specify all bits of a microimstruction in
each assembly instruction, default values are specified in the CPH
description. There is a default value for each of the fields as well as for
each subfield of each field. There is also a global default bit value
specified with the defbit directive that is used when the proper default is
not available. Since all fields and subfields in the CPH description have
defaults specified, this global default bit will never be used.

When a field 1s not specified at all in an instruction (no
$<field name>), then the default for the entire field is used. If there is no
default for the entire field, the global default bit value is used instead.
When the field is specified but a subfield is left out, either between commas
or at the end, the default for the subfield is used. If there is no default
for the subfield, the global default bit is used again rather than the field
default. Any or all of the subfields can be left out and they will be
replaced with the subfield defaults. For most of the fields, the default
values are the same in the field as in the subfields. The exceptions are the
$CCS, SIMM and SMWR fields. The $SEQ field is also unusual because
asgsignments to the physical bits have been made from its subfields rather than
the entire field. For that reason, the $SEQ field default has no effect and
the $SEQ field must be specified in an instruction to keep it from getting a
"don't care" value. It need not be given any subfield values, as they will
default to a continue instruction, but a $SEQ must be present, Physical

fields which are not assigned any bit values at all will get "don't care"
values.

4.1.2.2 Immediate Data

To use the immediate field, it is necessary to specify $IMM or $IMM EN
(DISable is the default value for the field, but ENable is the default value
for the subfield). The data value is held in the $REG field and must be
specified by filling in each of the subfields of the $REG field with the

appropriate number of bits from its binary representation. For example, to
specify the value

158

0B000011110000111100001111000011!10000
would require
$REG 0X01,0X38,0X0F,0X03,0X3,0X03,0X30

Use only hex or octal format in Microasm. Do not use binary. This is
inconvenient, but the immediate field should not be needed very often anyway.

The immediate address field can also be used to send literal addresses
to the program counter. It is done similarly. For example, the microorder
SIMMADD OxFFFF will emit the bits, OB111111111111 in the immediate address
field.

4.1.2.3 CPH ROM Format

When assembling microcode for the CPH, the format shown in Figure 50
applies. An MI word is 384-bits long partitioned into 8 ROMs. A single MI is
mapped as shown across several physical devices. Care must be exercised in
downloading the code from the host so that the words map accordingly.

4.2 Algorithms

Severe computational requirements are placed upon WSMR radar and
telemetry installations when multiple sensing and unreliable data acquisition
occurs. Decentralized tracking via the new Square Root Information Filter
(SRIF) offers exceptional promises. SRIFs easily handle sensor misalignment,
adapting to unexpected randomness, and noisy telemetry. The optimal tracker,
however, must be computationally efficient and fast. The tracker must also
correlate multiple objects with measurements, requiring the tracking filter to
be run on different sequences of measurements. To be reliable, the tracker
must be numerically stable under extremely tight real time constraints.
Figure 51 entitled, "Decentralized SRIF Architecture" depicts the typical
processing chain and Pigure 52 depicts the distributed/parallel architecture
for combining local processors into the decentralized tracker scheme.

Both the CPH and the VPH boards can serve as the local processor for the
SRIF. Where significant vector operations are required, the VPH excels in
real-time performance. When significant matrix manipulations occur, the CPH
is the better choice. It is anticipated that the major computational task is
the matrix inversion which is highly sensitive to the ill-condition of the
matrix. Matrix ill-conditioning can be quantified by the Mel-Penrose index.
This index is the absolute value of the difference between the largest
eigenvalue and the smallest eigenvalue. In practical terms, this index is 1
measure of the difference between the largest energy signal and the smallest
energy signal.

Matrix inversion can be accomplished by LU factorization, Gaussian

elimination, Gram-Schmidt PFactorization, Hermitian matrix inversion, and
scaled Givens rotations, general matrix inversion.

159

s

L Y

[—— o——

L —J IO et (Y S T N B

—_ OtV IO T

RON 7

ROM &

CPH ROM FORMAT
Each column represents a single x8 ROM
January 27, 1992

RON 5

ROM 4

RON 3

RON 2

RON 1

RO BANK RAN
ROM 0 ADDR SYSTEM ADDR PHASE ADDR

383.

376

378.

368

367.

.360

359.

352

351,

3

343,

.336

338.

.328

327.

.320

0

0

5

0

0

383.

376

375.

.368

367.

.360

359.

352

351,

344

343,

.336

338,

328

327.

320

K)A N

ROV,

.

.304

303.

296

295.

.288

287.

.280

209,

2N

271.

.264

263.

.25

3N,

312

1.

.304

303.

.29

295.

.208

287.

.280

219,

2N

271.

.264

263.

.256

255.

.248

247,

240

239.

23

221,

224

223,

216

215,

.208

207.

.200

199.

192

255.

.48

247,

.240

239.

232

231,

224

223.

216

215.

.208

207.

.200

199.

192

191,

184

183.

A76

175.

.168

167.

.160

159,

182

151,

A4

143,

136

135.

128

191.

184

183.

176

175.

.168

167.

160

159.

.182

151.

144

143.

136

135.

.128

127.

120

9.

A12

1.

.104

103..

.96

9s..

..88

87..

.00

1)

127.

120

119..

112

1.

.104

103..

.96

95...

.88

87..

..80

wlow| ~vNloojo]|&lwWwirn] -

63...

.56

55...

48

4.

..40

...

7]

o

23...

.16

—
[~J

63...

.56

55...

48

47...

40

39...

32

Lo

23...

16

—
—

383.

376

375.

.368

367.

.360

359.

.382

34

343.

336

—
»~

mlojlojojlololojlojlo|o|lo| o

383.

376

375.

.368

367.

.360

359.

352

.34

343.

.336

—
“w

.

J12

3.

.304

303.

.296

295.

.288

287.

.280

2n9.

272

—
-~

319,

312

3.

.304

303.

Wil

295,

.288

287.

.280

279.

272

—
on

255.

248

..240

239.

232

231.

224

223.

216

215.

.208

——
o

255.

248

..240

239.

232

231.

22

223.

216

218.

.208

—
~4

191.

184

476

175.

.168

167.

.160

159.

1582

151.

Jda4

—
- -3

191.

184

176

175.

.168

..160

..182

151.

44

—
~o

127.

120

.12

.. 104

..96

..80

~
(-3

e] | e e e | e |

127.

120

AR

..104

...96

...88

..80

~
—

63...

.56

..48

.40

.32

24

.16

~N
~

63...

.56

..48

.. 40

L3

!l

..16

N
L7

olo|ojlojo|lojlo|jeoe]jo|jlojoloellolo|joljlo|ojo|jlojeo|joc|lolo

oclolm]lm]lo]lvw]jw]lelaj]rjuowlo|lao|=m|r{Ninmn|jw]lw]] elo

—lo|l~w]lol~|lol—~|loj—w]lo|l—~|cocf—|ooj|lOo]|—~|o|l—]looj—mio]—

Figure 50.

CPH ROM Format

160

NO1121034d *+
vl

INIWN0D
E11 >
weOn

v

s
e w01 H* 2 133r%0
WINI 0D
P11
e S190d N
w01 w701 H1* 1 103090
WOSN3S
¥05S3208¢ W01 2 WOSNIS
NS
o w1 H* 2 1330w
¥ 900 B
vive
f.[‘ P11
03SS 30D vive nes S1¥0d3N
WO [w01 H* 1 123090
Q35S A0 . YOSNIS
¥0SS3J04d WION 1 WOSNIS

Decentralized SRIF Architecturs

Figure 51.

161

‘sjuawalinbal arempiey pue Josuas
paxe[al yjim spaau Sunyoery 3urjeaul
ui Juaurdaozdult diyeurelp 1oj [eijuajod
Suuagjo y3noayjyeaiq [edtuyday,

poleq

"ul10j 3[qe)s A[[eouduwIng JquIdy e
"21njonags feunpdQ o

“eyep Juissadoidaa
INOYJIM sidAnaueul o0} jdepy e

‘Plered Ajjedo] o

"UoIjedIUNUIUIOD
[ewnuII 3im paynqLISIP A[eqo[D) o

soA1390[qQ

Jauiquo)

JIgs
190D

105532014
®qo1D

‘ssaiSoud ur aouewsojsad
aaryeqjuenb Surjerjsuowap uotyejnuwis A)japy y3Siy e

‘pa13|dwod saatydalqo
[ie Sujeaw Apaiyejjenb juowdojerap wyjio3|y e

sjyuawysi[duwoddy
Jdrds

Jauiquion CE)
J1YS o1

[e20]

A1ys
[e207]

105533014 [@207]

sy10d
o.muluo.ml_.om_

2aNn10NYIIY [df[eaed/pajnqiaisi

sjdeouo)) (JIYS) 197114 uoljeuriojuj j00y arenbg maN
BIA ulyoel], pozi[eljuada(]

Distributed/Parallel Architecture

Pigure 52.

162

The computational budget for a complete SRIF is the following:

SRIF Computational Budget

Matrix Inversion 40%
Vector Multiplication 26%
Correlation 14%
Numerical Integration 6%
Scalar Manipulation 14%

The major tasks include adaptive tracking, nonlinear filtering, batch
initialization, sensor control, and track correlation. Adaptive tracking can
be accomplished via several methods some of which are listed in Figure 53
entitled "Adaptive Algorithms". They include the IMS, RLS, FLA, FTF, and
SFTF. Note that the LMS is a slow tracker but its computational complexity
(number of equivalent multiplication). The SFTF is fast but its computational
complexity is 4.5 times worse than the LMS. The FTF is not stable. Therefore
it is not suitable for the SRIF or the EVA architecture.

During April 1990, a new algorithm wase investigated for the time motion
resolution task at WSMR, because this is a very demanding application and time
consuming to WSMR. It was found that the new algorithm could improve and
enhance signal analysis of signals which are both time and frequency limited
without the need for long windows as is required when using the Fourier
transform. Because this new algorithm, called the Wigner-Ville transform, has
significant improvements over the Fourier transform, an intensive analysis of
its features was made and applied to the CPE. The CPH as currently configured
appears to support this important new discovery.

The Mentor target tracker algorithms (a realization of DSRIF) were also
examined carefully for implementation into either or both the VPH and CPH.
The basic sequence of steps in the computations is as follows:

1. Take measurements (range, rate,...)

2. Execute local filters in parallel

3. Merge 1 at the global level

4. Local filter time update

5. Global merge

However, additional equations need to be computed in order to support steps 1
through 5. All matrices appear to be less than 25 x 25 elements in size.
There are no real-time matrix inversion operations. One inversion is needed
at the onset, however. Several orthogonal transformations are needed but
appear to be straightforward. Givens rotations were suggested by Dr. Mitch
Belza for some matrix manipulations.

163

jentouodxo N6
ajrasum NL %) STH
renuauodxa [(x) NOE = () NT + (X)NVI| I5%) STH
rerjuauodxa N9+ NC
[enuauodxa N¢

Anpiqess (x) Apxardutco
[eousumy reuoijejndwod

paajos
udjqoid

woysAs uotyededoid Jo11a ayy Jo Afiqess : A)Njiqess [edUdWINY @

(z Jo xuew UoNERLICd0INE Jo pralds an[eauddtd uo spuadap punoq)
wiyjtioSpe SWT 23 jo ured ayy uo punoq ® sasodun 2uad1eAuod jo juawsastnbal

L, "SIN'T ey sovsuajoereyd buryovsy 1ojse] sey Ajresauad 7Y : STH < ST @

JLJ 2[qe1s Affeouawin 4] 4S
ULI0] J9)[Yj [esIdAstresy ut wiyjuiosre STY 1% : JLJ

uLIoj 3onTe| Ut wjtodE STY 158 : V14
uryjuospe sarenbg-1sea] aalsmiay Areutpio : STY

164

Adaptive Algorithme

Pigure 53.

(sarenbg weapy 3sea]) wyjtiodfe juatpesd orseypols : W @

4.2.1 Algorithms for Solving Linsar Systems

STC's design review of the VPH, with respect to providing a full range
of math functions, has yielded a healthy respect of its calculation
capabilities. The VPH has 4 separate calculation units which can run in
parallel, each of which can perform a square root in approximately 1.52
microseconds and a division in less than 1 microsecond. While these figures
are not the fastest figures in the world, they are very respectable when
viewed in the context of the architecture’s main function, FFTs, which require
complex multiply accumulates. This speed and flexibility allows the
architecture to provide a wealth of proceesing speed which can be used for
virtually any mathematical functions which might need to be performed. When
the overall speed of the existing VPH architecture was compared with an
architecture utilizing an additional processing unit such as the BIT chip, the
cost to performance ratio of the speedup was very poor and the possible
enhancement was discarded.

Many different algorithms solve matrix equations, and most of them rely
on triangularizations of the input matrix. Triangularization is invariably
followed by some sort of substitution to find the solution vector. Thus, the
most efficient solutions are those which require the fewest calculations for
their triangularization and subsequent backsubstitution. LU factorization and
Gaussian elimination are now examined since they are important equation
solvers.

4.2.2 LU Factorization

One effective method of solving a linear system Rw=s is to factor the
coefficient matrix R into a product of two triangular matrices. The problem
is then reduced to solving two triangular systems. The LU factorization
produces a lower triangle matrix L, and an upper triangle matrix U, whose
product is the original matrix: LU=R. This factorization is computationally
simple because it consists primarily of inner product calculations. Once a
factorization is found, the solution is simply a set of backsubstitutioms.

In recent years, the LU decomposition has not received much attention,
both because it is not very suitable for systolic array implementation, and
because it is already so well known. However, because so much is known about
it, and since the proposed implementation is a pipeline rather than an array,
the LU algorithm appears to be the best solution.

4.2.3 Gaussian Elimination

Despite origins that date from at least 250 B.C., elimination methods
are still viable as solution vehicles for 1linear equations. Gaussian
elimination is widely know, being the primary method taught in introductory
linear systems courses. The algorithm consists of a series of row
interchanges (called pivots), combined with subtraction of matrix elements.
It forms an upper triangle matrix by eliminating elements in the Ilower
triangle of the coefficient matrix. The computational complexity of Gaussian
elimination is identical to that of LU decompositionj in fact, if a specific
pivoting strategy is followed, both methods will compute with the same
accuracy.

165

e e

4.2.4 Gram-Schmidt Decomposition

Another elimination method is the Gram-Schmidt algorithm which performs
a Cholesky factorization on Hermitian positive-semidefinite matrices. Since a
spatially distributed covariance matrix is Hermitian and positive-
semidefinite, Gram-Schmidt is a valid algorithm for consideration. Since it
is an elimination method, Gram-Schmidt operates like Gaussian elimination,
first producing an upper triangle matrix, and then backsubstituting to find w.
Unlike standard Cholesky factorization, the Gram-Schmidt method requires no
square root calculations.

By 1990, researchers designed an array processor for adaptive
beamforming based on the Gram-Schmidt algorithm. They replaced the reciprocal
calculation with a shift, essentially the reciprocal of the nearest power of
two, While this method avoids division, it solves a perturbed set of
equations. Others were able to eliminate the divisions without disturbing the
equations by generalizing the Gram-Schmidt method. Unfortunately, their
method of eliminating the reciprocal tripled the number of multiplicatioms.

4.2.5 Inversion of a Hermitian Matrix

Similar to the LU decomposition, inversion of a Hermitian matrix is much
easier than inversion of an arbitrary matrix. First the matrix is
triangularized, then the new matrix is formed by backsolving. The main
difference between LU decomposition and Hermitian matrix inversion is the
method of backsubstitution. Whereas LU decomposition reduces a triangular
matrix down to a vector with O(N2) operations, the symmetric inversion expands
a triangle matrix back to a full square matrix with O(N3) operations.

4.2.6 Scaled Givens Rotations

Despite a somewhat higher computational complexity, scaled Givens
rotations have received much attention. The main advantages of this algorithm
are:

1. easy implementation with a variety of parallel structures

2. flexibility to perform several matrix operations (e.g. singular value
decomposition, diagonalization, and triangularization)

3. ability to compute plane rotations without square roots, and with
half the multiplications of standard Givens rotations

4. high efficiency for sparse matrix operatioms

5. amenable to recursive least squares minimization techniques

Since these advantages have little effect on the solution of linear
equations, we conclude that Givens rotations are more suitable for
calculations other than a linear solutionm.

4.2.7 Compsrison of Algorithms
Though all of the algorithms perform essentially the same operation, a
determination of weight vector w, they are not equal in complexity. Table 1

gives a comparison of the number of operations (real multiplies, reciprocals,
and additions) needed for each of the methods.

166

Table 1. Complexity of Solutions to Simultsnsous Equations

Aigprithl' Number of Operations Total for N=32
w , Multi 2/3 N+ 5N - 7/3 N 27,040
Factorisation Recip: N 3 32
Add:s 2/3 N0 « 4n® - 2/3 ¥ 25,920

Gausaian Mults 2/3 W + SN - 7/3 W 27,040
Elimination Recips N Je
Adds 2/3 B0 « 4 - 2/3 ¥ 25,920

Gram- Mult: 2K2 + 2N° - 4N 67,456
Schaidt) (6K - 2K° - 4N) (194,432)
Factorigzation Recip: N 32
(and Divisiog- 0 (0)
Free Version”) Add: 2N3 + 2"2 - 4N 67,456
(48’ - 4N) (130,944)

Inversion Mult: 2K° + 11/2 N2 +3/2 N 7,216
of Hortitinn Recip: N 32
matriy Add: 2K° + 4N° - 2N 69,568
Scaled Gigens Mult: 8/3 N2 + 105/6 W2 +89/6 N 105,776
Rotations Recipt 1/2 N2 - 1/2_N 496
Add: 8/3 N2 « 12N + 28/3 N 99,968

General Mult: 29/6 N + 3K - 53/6 N+ 5 161,173
Matrix ‘ Recip: ¥ 3
Inversion Add: 29/6 l3 - 2!2 - 11/6 N ¢+ 5 156,277

167

Table 1 shows the computational superiority of the LU factorization and
Gaussian elimination methods, in terms of multiplications and additions. If
reduction of divisions is the primary goal, then one of the Gram-Schmidt
algorithms should be used. One can also see that matrix inversion is the most
complex, and therefore the least desirable of the methods.

Because LU factorization is the fastest of the algorithms, and because
Maron shows that it is easier to implement than Gaussian elimination, use of
LU factorization is suggested. Our studies show that LU factorization is
computationally simpler than other methods, and other publications recommend
it as the optimum algorithm for solutions of simultaneous equations. For
those reasons, implementations research currently focuses on efficient
circuits for LU factorizationm.

Table 2 compares several least-squares computational techniques. The
normal equations, Householder, Golub factorizations, standard Givens rotation,
fast Givens rotation, scaled Givens rotation, and Gram-Schmidt methods are
considered. Either the normal equations or the Householder Golub techniques
require global communications. Additionally, these two techniques are
sensitive to ill-conditioned matrices. Hence, the normal equations or the
Householder Golub method are not amenable to systolic implementation. The
Gram-Schmidt method, included for completeness, is not recursive and,
therefore, is not considered for systolic implementation.

The remaining methods are based on the Givens rotation triangular
decomposition. The standard Givens rotation requires pivoting as well as
square~root computation. This slows the computation on systolic arrays. The
square-root free Givens rotation eliminates the square-root computation but
still requires pivoting. The scaled Givens rotation eliminates both the
square-root computation and pivoting. Additionally, the scaled Givens
rotation operates on matrix bands. It is not necessary to perform any
computation on bands that contain only null elements. A computational savings
is realized if the data matrix is in banded form. WNote that the square-root
free and scaled Givens rotations require half as many multiplies as the
standard Givens rotation. The scaled Givens rotation only requires 1 division
operation as opposed to 2 in the square-root free rotation. Apparently the
scaled Givens rotation is superior to the other methods studied both in terms
of computation speed and systolic implementation complexity.

le8

Table 2. VWaighted Least Squares Computational Methods
| ==~-Triangular Decompositions----|
Normal House- Standard Fast Scaled Gram-
Equa- Holder Givens Givens Givens Schmidt
tions Golub Rotations Rotations Rotations
Systolic Non- Requires Yes, but is 1If No Not
Amenable nearest global slow and factored pivots recur-
neighbor comm processor v~ free and sive
data complex operation, v/ free
paths recursive nearest nearest
separate neighbor neighbor
back-sub- pivoting comm
stitution increases
systolic data flow
array complexity
Additions/
Subtractions
Mult. /Stage N N/2 N/2
Div./Stage 2 1
Shifte/Im Scal. Scal. Complax Complex 2
Compl. Coumpl.
Latency r+c+l
Stable Sensitive to Matrix Yes Equiv. to Well
Ill-Condition Number Standard Cond.
Givens
Pivoting 2x1 2x1 None
Vector Vector
Fading Complex Complex Complex Simple Simple
Signal
Capacity
(Weighted)
Row Complex Complex Complex Complex Simple
Removal
Ldle N/2 N/2 N/2
Processors
Computation 2r+c+l 3m+ lo(m+z)
Tine 3(q-1)+z+]
Rumber of e(r+l)/2 q(w+z) 0(wP+zw)
Processors

Table Notation:

matrix, n - word length

169

r -rows of rectilinear matrix, c¢ - columns of rectilinear

4.2.8 VPH FFTs

A description of the FFT implemented on the VPH is now described. It
serves as an introduction to the I/0 compute overlap capabilities of the VPH
and should be carefully studied. It will serve as the benchmark training
program for the VPH. Hence, a full understanding of its operation is useful
for future code development.

A 1024 point complex FFT is an ideal application for the VPH board. The
Zoran DSP chips have the FFT coefficients in ROM for up to that size. 1In
addition, a 1024 point FPFT can be decomposed into two waves of thirty-two 32
point FFTs, each wave performing five of the ten passes required. Though the
chips are capable of 64 point FFTs in a single instruction, processing 32
points at a time is more efficient when multiple FFTs are required. This is
due to the ability of the chips to process data in half of the on-board RAM
while transferring data between external memory and the other half of the on-
board RAM. Since storing processed data and loading new data takes less than
half the time that an FFT operation does, they can effectively be done for
free even when sharing a bus between two chips working on the problem
simultaneously.

The problem is very amenable to parallel use of all four DSP chips at
once. Each chip can perform eight of the thirty-two FFT operations in each
wave. The only time synchronization is needed between the processors 1is
between waves. During each wave, each processor works with a distinct subset
of the points. However, the points have to be redistributed among the
processors between waves, so it is necessary to ensure that all of them finish
the first wave before the second one starts. This inherent parallelism in the
algorithm means that there is very little overhead required. The initial load
and final store operations cannot be pipelined with the FFT operation and the
parallel version has four times as many of these. They will also occur at
almost the same time for the two processors sharing a bus, resulting in half
the speed. These factors should have only about a 102 effect on the execution
time. The VPH board should therefore be able to perform a 1024 point FFT
almost four times as fast as a system with a single Zoran DSP chip.

The actual code works as follows. First the processors clear their
semaphore flags to indicate that they are working. They then load their mode
register with values that indicate that the intermal RAM is to be divided into
two banks and that bank references are to be inverted each time the loop
counter is decremented. Then the two index register are set to point to the
locations for incoming and outgoing data. In the current code, the first wave
is done in place so they point to the same locations. A single index register
could be used, but using both makes it easier to change to using a different
location for the outgoing data 1if desired. The index registers on each
processor are initialized to values offset by eight from the previous
processor. This allows for each processor performing eight FFTs. The loop
counter register i1is initialized to perform the seven fully pipelined
iterations. The first set of data points are loaded from locations spaced 32
elements apart, as required by the FFT algorithm being used when the input
data is in sequential order. Each subsequent set of date points will be
loaded from a location one element after this one, so that after eight sets on
each processor, all points will have been processed. Seven of the eight sets
are handled in a loop that loads a set into the unused RAM bank, starts an

170

FFT, and then begins storing the results from the previous bank. After the
loop, the final data set is stored. Outgoing data is stored in bit-reversed
order to compensate for the reversal that occurs during the FFT calculationm.

When each processor finishes the first wave, it uses one of its status
bits to indicate that fact. The 68020 or one of the DSP chips designated to
be master performs a full or partial handshaking operation using ome of its
own status bits to synchronize the end of the first wave and the start of the
second. In the second wave, the FFTs are performed on sets of 32 adjacent
elements. Each DSP chip again handles eight adjacent sets. The output
results must be put in a separate output area this time because they are
stored with a spacing of 32 again, instead of the spacing of one that the
input is loaded from. This change in spacing performs a bit-reversal between
the bits used to index the first and second waves, just as reversing each of
the blocks during the store operations performs a bit-reversal of the index
within a wave. This results in the ocutput being in normal order instead of
bit-reversed order. Each set is processed with an offset into the coefficient
table to provide the correct value to account for it being part of a larger
FFT. With these differences, the second wave is performed in the same manner
as the first. When all processors indicate that they are finished with the
second wave, the 1024 point FFT is complete.

The entire operation should take 133 clock cycles for the initial load
and final store of each wave, doubled for the bus sharing, plus 334 cycles for
each 32 point FFT. Allowing some extra time for synchronization, the entire
FFT should take around 475 microseconds with a 25 MHz clock. This compares
with a benchmark from Zoran of 1732 microseconds for a single chip.

4.2.9 VPH Software Conventions

In order to allow the software modules on the VPH board to work together
properly, conventions must be established for their interaction. This is
particularly important because the VPH has multiple processing elements that
need to interact. The board provides a number of mechanisms for communication
between these elements. Setting conventions for how they will be used is
necessary for consistency.

VPH Resources

The processing elements on the VPH board are four Zoran VSP (Vector
Signal Processor) chips and a Motorola 68020 microprocessor. A VME bus
interface also allows an external processor to access the board.

There are two types of shared memory on the board. There are two local
buses with two of the four VSP chips attached to each. Local memory on each
bus is shared between the two VSPs that are attached to it. The VSP bus
protocol allows bus locking to provide the mutual exclusion necessary to use
the local memory for interprocessor communication. Each local VSP bus also
has access to a four port memory shared by all the processors.

The 68020 has access to all system resources. This includes the local
memories on the VSP buses and registers and control locations inside the VSP
chips themselves. It cannot lock the local buses, but proper use of the VSP
control locations should allow an equivalent ability. The 68020 can also

171

interrupt the VSP chips. With an appropriate interrupt routine, that allows
the 68020 to preempt the buses as well.

There 1s also a status latch accessible by all processors. Each can
write to two bits of the latch and read the other processors® bits from the
latch. This does not provide any capabilities beyond those available through
shared memory, though it is more convenient to use. In particular, it does
not provide a mechanism for implementing true semaphores to comntrol access to
other resources.

Uses of Resources

The resources on the VPH are not sufficient to allow completely general
synchronization of parallel tasks running on different processors without
considerable overhead. However, they are adequate for the algorithms that are
expected to execute on the VPH. Most of these algorithms will involve
splitting up a task into almost identical subtasks, each of which will be
executed on one of the VSP chips. All working VSPs will therefore need
synchronization at the same points in their subtasks. This can be performed
by using the status register and designating one of the processors as sa
synchronization arbitrator. In order to maintain the symmetry between the
VSP chips, the 68020 will act in that capacity. This may not be the best
choice for future use, since the 68020 may have other tasks to perform, but it
is adequate for the present. One of the status bits for each VSP will be set
to indicate that it is finished with its last assigned task. The other will
be used to synchronize the VSPs by a full handshake with the 68020. This use
of the second bit is not strictly necessary, since the same effect could be
achieved by ending a task every time synchronization is needed. For the
initial algorithms being written, this would probably be adequate. Only the
FFTs need such synchronization and they only need it once. However, some
future algorithms might need multiple synchronization points and the overhead
of restarting the processors after each one might become excessive. Another
possible method of synchronizing would be the use of the SYNC:[XE] instruction
with a write to the $CAW location on each chip.

The bus lock on the shared local bus gives the shared local memories the
most powerful communication mechanism. Their limitation is that they can only
be used between the processors that share them. This is not useful for the
global communication required by the algorithms being executed. Therefore
this capability will not be used. The VSP chips will share code and static
tables in these memories, but not data. Each one will maintain its own
private data area. For simplicity, each will be preallocated a run-time stack
area from which it can allocate storage.

The ability of the 68020 to access the VSP memories and registers can be
used to communicate parameters such as the size and location of data to be
processed. These parameters will allow for more functionality and for the
slight differences in the tasks performed by each processor without any
duplication of code. Placing such parameters directly into the VSP registers
would give tiny performance improvements, but this is unlikely to justify the
added complexity in the 68020 code. It does give the 68020 the ability to
invoke subroutines that were written to expect parameters in registers without
needing a separate version that performs the same task using parameters on the
stack.

172

The parameters should be passed to each VSP by constructing a call frame
on its run-time stack. The $SP register and $PC register must be set to the
correct values so that it appears that a call has just been made. This will
allow the same routine to be invoked from the 68020 or called by the VSP
directly as part of another task. Making the call frame compatible with the
Zoran library conventions will allow that code to be used when a single VSP
chip is sufficient. In many cases, parallelism may be coarse enough that
standard library functions can even be used as part of a subtask. For
example, a dot p